Infocommunications and Radio Technologies, vol. 6, no. 3, pp. 285–293, 2023. *Инфокоммуникационные и радиоэлектронные технологии.* 2023. Т. 6, № 3. С. 285—293. ISSN: 2587-9936 DOI: 10.29039/2587-9936.2023.06.3.22

УДК 548.737

Исследование внутренней структуры кластеров $[C_{60}@{H_2O}_n]_k$ гидратированных комплексов фуллерена $C_{60}@{H_2O}_n$ методами АСМ

Торхов А. Н.

Севастопольский государственный университет ул. Университетская, д. 33, Севастополь, 299053, Российская Федерация trkf@mail.ru; natorkhov@sevsu.ru

> Получено: 23 мая 2023 г. Отрецензировано: 31 мая 2023 г. Принято к публикации: 31 мая 2023 г.

Аннотация: С использованием методов ACM подтверждено наличие у кластеров $[C_{60}@{H_2O}_n]_k$, окруженного рыхлой оболочкой более твердого центрального ядра, и проведены оценки силы сцепления ядра с рыхлой оболочкой.

Ключевые слова: водные коллоидные растворы фуллерена C_{60} , структура кластеров $[C_{60}@{H_2O}_n]_k$, методы ACM, микромеханические свойства.

Для цитирования (ГОСТ 7.0.5—2008): Торхов А. Н. Исследование внутренней структуры кластеров [$C_{60}@{H_2O}_n$]_k гидратированных комплексов фуллерена $C_{60}@{H_2O}_n$ методами АСМ // Инфокоммуникационные и радиоэлектронные технологии. 2023. Т. 6, № 3. С. 285—293.

Для цитирования (ГОСТ 7.0.100—2018): Торхов, А. Н. Исследование внутренней структуры кластеров $[C_{60}@{H_2O}_n]_k$ гидратированных комплексов фуллерена $C_{60}@{H_2O}_n$ методами АСМ / А. Н. Торхов // Инфокоммуникационные и радиоэлектронные технологии. — 2023. — Т. 6, № 3. — С. 285—293.

1. Введение

Большинство применений бакибола фуллерена C_{60} в электронных [1, 2], органических [3], химических [4] и биологических [5] нанотехнологиях, медицине [6] связано с использованием коллоидных систем. В частности, его водные коллоидные растворы являются промежуточным звеном в использовании их уникальных свойств в различных технологических приложениях.

Как правило молекулы C_{60} практически не растворимы в воде. Тем не менее, непрямыми способами из них получают достаточно стабильные вод-

ные коллоидные растворы плотностью 10^{-4} —1,0 mg/ml [5, 7]. В процессе протекания такой реакции гидратирования происходит структурирование (коагуляция) объемной воды вокруг бакибола С₆₀ с формированием прочной двухмерной 2D-сетки первого слоя диаметром 1.6—1.8 nm, состоящего из n = 20 молекул воды и образованием гидратированного супер молекулярного комплекса фуллерена $C_{60}@{H_2O}_{n=20}(C_{60}FAS$ —Fullerene Aqueous Colloid Solution [7]). Согласно [8] окружающие бакибол молекулы воды формируют додекаэдр — квази-сферическую структуру из 20 молекул H₂O, каждая из которых располагается прямо над центром каждого из 20 шестиугольных колец фуллерена и образует с этим кольцом водородную π-связь. Согласно [7] водная 2D-сетка остается стабильной до температур 100 °C, а ее температура плавления при нормальных условиях $T_{nn} = 2,80$ °C заметно отличаются от $T_{nn} = 0$ °C обычной воды. Впоследствии на основе расчетов с использованием первопринципных методов было показано, что наиболее энергетически стабильной является комплекс фуллерена C₆₀ с гидратной оболочкой, состоящей из шестидесяти n = 60 молекул воды $C_{60}(H_2O)_{60}$ [9].

В зависимости от концентрации гидрофильные комплексы $C_{60} @ \{H_2O\}_n$ в коллоидных растворах, в свою очередь, могут ассоциировать друг с другом за счет их водных оболочек с образованием целого набора сферических кластеров $[C_{60} @ \{H_2O\}_n]_k$ (k — целое число) размерами от единиц (3,4; 7,1; 10,9; 14,5; 18,1; 21,8; 25,4; 28,8; 32,4; 36,0 nm [10]) до сотен (380—800 нанометров [11]).

Важность исследования дисперсного состава данных коллоидных систем определяется еще и тем, что размеры кластеров оказывают значительное влияние на их оптические (цвет, интенсивность люминесценции), химические, механические и электрофизические свойства и, как следствие, на свойства коллоидного раствора.

Практически все из этих свойств напрямую связаны со внутренним строением таких кластеров. В частности, авторы [12] в 2002 году описали модель сферического (икосаэдрического) кластера $[C_{60}@{H_2O}_n]_{13}$ диаметром 3,4 нм, состоящего из тринадцати k = 13 бакиболов C_{60} , окруженных общей структурированной водной оболочкой. Позже (2020 г.) авторы [13] показали, что устойчивый кластер из фуллеренов в коллоидном растворе должен иметь плотную упаковку молекул C_{60} внутри — плотное ядро и рыхлую внешнюю оболочку.

Несмотря на большой объем накопленной информации о самих фуллеренах и их гидратированных комплексах, механизмы формирования супермолекулярных кластеров $[C_{60}@{H_2O}_n]_k$ в водных коллоидных растворах, которые в конечном итоге и определяют свойства коллоидного

раствора, все еще остаются малоизученными. Причиной этому является недостаток экспериментальных данных о внутреннем строении таких кластеров, связанный с их повышенной чувствительностью к различного рода внешним воздействиям (например, высокой мощности луча электронного микроскопа) и низкой разрешающей способностью на наноуровне некоторых используемых аналитических методов (например, *DLS*).

Исходя из вышеизложенного, задачей данной работы является исследование высокоразрешающими методами ACM внутреннего строения кластеров $[C_{60}@{H_2O}_n]_k$.

2. Методика эксперимента

Для приготовления водного раствора фуллерена C_{60} использовали его насыщенный раствор в толуоле (чистотой >99,99 % по анализу *HPLC* (*High-performance liquid chromatography*) с концентрацией молекул C_{60} , соответствующей максимальной растворимости ~2,9 мг/мл (раствор $C_{60}:C_7H_8$). Затем, насыщенный раствор $C_{60}:C_7H_8$ смешивали в открытой колбе с одинаковым количеством дистиллированной воды и в таком виде обрабатывали в ультразвуковой ванне при комнатной температуре. Процедуру продолжали до полного испарения толуола и окрашивания жидкой фазы в светло-коричневый цвет. В результате такой процедуры из раствора полностью удалялся органический растворитель и образовывался слабо опалесцирующий полупрозрачный водный коллоидный раствор гидратированных кластеров [$C_{60}@{H_2O}_n$]_k и их агрегатов [14, 15] с примесью флоккул — взвешенных в объеме хлопьевидных скоплений. Очистка от флоккул осуществлялась путем центрифугирования при 10000 об/мин в течение 5 минут.

Для приготовления образцов из объема аликвоты прецизионным дозатором отбирали надосадочную жидкость и раскапывали на поверхность эпитаксиального кремния дырочного типа проводимости (p-Si{111}). После высыхания капли аликвоты водно-коллоидные кластеры [$C_{60}@{H_2O}_n]_k$ размерами от единиц до сотен нанометров оказываются броуновским образом рассосредоточены по поверхности эпитаксиального слоя.

Исследование формы кластеров $[C_{60}@{H_2O}_n]_k$, их фазового состава и внутреннего строения осуществлялось на воздухе при нормальных условиях с использованием атомно-силового микроскопа (ACM) *NTEGRA-SPECTRA* производства «HT-MДТ» на базе Центра коллективного пользования «Молекулярная структура вещества» Севастопольского государственного университета. Высокая точность (по горизонтали ~0.2 nm, а по вертикали ~0.04 nm) и чувствительность метода ACM в широком интервале измерительных масштабов, а также возможность прецизионного управления силой $F_{\rm ts}$ воздействия зонда на исследуемый нанообъект на микронном и нано-уровнях делает этот метод предпочтительным в данном случае перед всеми остальными методами.

3. Результаты экспериментов

Согласно общим физическим представлениям, взаимодействие зондповерхность должно определяется не только молекулярными силами взаимодействия зонда с поверхностью, но и микромеханическими свойствами поверхности и приповерхностной области. Например, из теории нелинейных колебаний хорошо известно, что наличие связи между линейным (балка кантилевера) и нелинейным (кластер) колебательными контурами может приводить не только к изменению амплитуды колебаний, но и к изменению фазы Δθ. Сложное конструктивное строение гидратированных кластеров, судя по всему, обуславливает наличие у них нелинейных микромеханических свойств, что позволяет рассматривать такие наночастицы в качестве нелинейных механических колебательных систем. На рис. 1 различия в нелинейности микромеханических свойств разных участков кластера (ядра и «шубы») схематично обозначены виде различных пружинок с разным шагом и диаметром витков. В результате, на том участке поверхности гидратной оболочки — области G, под которой расположено ядро, взаимодействие зонд — поверхность будет отличаться от аналогичного взаимодействия вне этой области (рис. 1, области Q). В этом случае, даже если фазовый состав поверхности шубы будет однородный, обусловленные ядром локальные неоднородности механических свойств приповерхностной области на участке G (рис. 1) будут приводить к изменению фазы $\Delta \theta$ и возникновению фазового контраста $\Delta \theta = \Delta \theta(x; y)$, что мы и наблюдаем в экспериментах.

Увеличение или уменьшение силы прижатия кантилевера F_{ts} подтвердило наличие у кластеров неоднородных механических свойств и ярко выраженной внутренней структуры. Например, при $F_{ts} < 36$ nN кластеры проявляют простую дискообразную форму. Увеличение силы прижатия $F_{ts} \ge 36$ nN позволяет выявлять на поверхности кластера участки с неоднородными микромеханическими свойствами, что позволяет «пальпировать» их внутреннее строение и выявить под поверхностью наличие более жесткой центральной области — ядра. Тут стоить отметить, что необходимое для реализации тех или иных целей значение F_{ts} может варьироваться в зависимости от размеров кластера и режимов измерения (например, резонансной частоты f, амплитуды A_{max} и упругости балки кантилевера). TORKHOV N. A. AFM Study of the Internal Structure... TOPXOB H. A. Исследование внутренней структуры кластеров...

Рис. 1. Схема полуконтактного режима ACM-сканирования кластера $[C_{60}@ {H_2O}_{20}]_k$: 1 — плотное ядро кластера, 2 — рыхлая оболочка, k_t — коэффициент упругости балки кантилевера, k_{s1} — коэффициент упругости ядра, k_{s2} — коэффициент упругости рыхлой оболочки.

Fig. 1. Scheme of the semi-contact mode of AFM scanning of the $[C_{60}@ {H_2O}_{20}]_k$ cluster: 1 is the dense core of the cluster, 2 is the loose shell, k_t is the elasticity coefficient of the cantilever beam, k_{s1} is the elasticity coefficient of the core, k_{s2} is the elasticity coefficient of the loose shell

При более сильном воздействии $F_{ts} \ge 42$ nN шуба легко «сдирается» и оголяет более жесткое ядро. Данный эффект продемонстрирован на примере относительно небольшого кластера с поперечными размерами $d \sim 70$ nm. На растровом ACM-изображении видно, что выступающее из гидратной оболочки («шубы») ядро размером d_c окружено ее остатками (рис. 2*a*). Это хорошо продемонстрировано и на профиле поперечного сечения h=h(x;y) (рис. 2*a*, A-A). Растровое изображение фазового контраста указывает на различия в фазовом составе водной шубы и ядра, а профиль поперечного сечения $\Delta \theta = \Delta \theta(y)$ позволяет точно определить границы их фаз (рис. 2*b*, B-B).

4. Заключение

Таким образом, возникновение фазового контраста на однородной по составу поверхности при ее ACM-сканировании в полуконтактном режиме может указывать на различие микромеханических свойств центральной и периферийной областей кластеров $[C_{60}@{H_2O}_n]_k$. Прямыми ACMизмерениями подтверждены выводы работы [12] о наличии у кластеров, окруженных рыхлой оболочкой, более твердого центрального ядра, и проведены оценки силы сцепления ядра с рыхлой оболочкой.

Рис. 2*a*. Растровое 300×300 точек ACM изображение рельефа $h = h(x;y) 0.4 \times 0.4 \, \mu m$ участка поверхности образца (A_{max} =30 nm и $F_{\text{ts}} = 4$ nN) с профилем h = h(y) сечения A-A.

Fig. 2a. Raster 300×300 points AFM relief image $h = h(x;y) 0.4 \times 0.4 \mu m$ of sample surface area ($A_{max} = 30 nm$ and $F_{ts} = 4 nN$) with profile h = h(y) of section A-A

изображение фазового контраста $\Delta \theta = \Delta \theta(x;y)$ 0.4×0.4 µm участка поверхности с профилем $\Delta \theta = \Delta \theta(y)$ сечения B-B.

Fig. 2b. Raster 300×300 points AFM image of the phase contrast $\Delta \theta = \Delta \theta$ (x;y) 0.4×0.4 µm of a surface section with a profile $\Delta \theta = \Delta \theta$ (y) of section B-B

Благодарности

Автор выражает благодарность научному сотруднику НИЛ «Молекулярная и клеточная биофизика» Мосунову Андрею Александровичу за помощь в приготовлении образцов.

Список литературы

- 1. Kronholm D. F. et al. Blends of fullerene derivatives, and uses thereof in electronic devices. Patent №: US 8,945,807 B2, date of Patent: Feb. 3, 2015.
- Bakhramov S. A.; Kokhkharov A. M.; Makhmanov U. K.; Aslonov B. A. Self-Organization of Fullerene C60/70 Molecules in Solutions and in the Volume of Drying Drop // Scientifictechnical journal. 2020. Vol. 24, iss. 5. Article 6.
- Harris P. J. F. Fullerene Polymers : A Brief Review // Journal of Carbon Research. 2020. T. 6, № 4. C. 71.
- 4. Evstigneev M. P. et al. Complexation of C60 fullerene with aromatic drugs // Chem-PhysChem. 2013. T. 14, № 3. C. 568—578.

TORKHOV N. A. AFM Study of the Internal Structure... ТОРХОВ Н. А. Исследование внутренней структуры кластеров...

- 5. Prylutska S. et al. Water-Soluble Pristine Fullerenes C₆₀ Increase the Specific Conductivity and Capacity of Lipid Model Membrane and form the Channels in Cellular Plasma Membrane // J. Biomed. Nanotechnol. 2012. T. 8, № 3. C. 522—527.
- 6. Kumar A. Fullerenes for biomedical applications // Journal of Environmental and Applied Bioresearch. 2015. T. 3, № 4. C. 175—191.
- Ritter U. et al. Structural Features of Highly Stable Reproducible C₆₀ Fullerene Aqueous Colloid Solution Probed by Various Techniques // Fullerenes, Nanotubes and Carbon Nanostructures. 2015. T. 23, № 6. C. 530—534.
- 8. Chaplin M. Water structure and behavior. London : South Bank University, 2003. Available: http://www.lsbu.ac.uk/water/buckmin.Html (accessed June 2000).
- Scharff P. et al. Structure of C60 fullerene in water: spectroscopic data // Carbon. 2004. T. 42, № 5-6. C. 1203—1206.
- 10. Andrievsky G. V. et al. Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy // Chemical Physics Letters. 1999. T. 300, № 3-4. C. 392–396.
- Makhmanov U. K. et al. The formation of self-assembled structures of C60 in solution and in the volume of an evaporating drop of a colloidal solution // Lithuanian Journal of Physics. 2020. T. 60, № 3. C. 194—204.
- 12. Andrievsky G. V. et al. Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy // Chemical Physics Letters. 2002. T. 364, № 1-2. C. 8–17.
- Peidys D. A., Santiago A. A. H., Evstigneev M. P. The interplay of enthalpic/entropic factors in nanoparticles' aggregation in solution : The case of fullerene C60 // Journal of Molecular Liquids. 2020. T. 318. C. 114043.
- 14. Ritter U. et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques // Fullerenes, Nanotubes and Carbon Nanostructures. 2015. T. 23, № 6. C. 530—534.
- 15. Prylutskyy Y. I. et al. C 60 fullerene aggregation in aqueous solution // Physical Chemistry Chemical Physics. 2013. T. 15, № 23. C. 9351—9360.

Информация об авторе

Торхов Николай Анатольевич, ведущий научный сотрудник НИЛ «Динамика полета и управление беспилотными авиационными комплексами» Института национальной технологической инициативы Севастопольского государственного университета, Севастополь, Российская Федерация. ORCID: 0000-0001-8902-6319.

AFM Study of the Internal Structure of $[C_{60}@{H_2O}_n]_k$ Clusters of Hydrated $C_{60}@{H_2O}_n$ Fullerene Complexes

N. A. Torkhov

Sevastopol State University 33, Universitetskaya Str., Sevastpol, 99053, Russian Federation trkf@mail.ru, natorkhov@sevsu.ru

> Received: May 23, 2023 Peer-reviewed: May 31, 2023 Accepted: May 31, 2023

Abstract: AFM methods were used to confirm the presence of a harder central core surrounded by a loose shell in $[C_{60}@{H_2O}_n]_k$ clusters and to estimate the adhesion force between the core and the loose shell.

Keywords: aqueous colloidal solutions of C_{60} fullerene, $[C_{60}@{H_2O}_n]_k$ cluster structure, AFM methods, micromechanical properties.

For citation (IEEE): N. A. Torkhov, "AFM Study of the Internal Structure of $[C_{60}@{H_2O}_n]_k$ Clusters of Hydrated $C_{60}@{H_2O}_n$ Fullerene Complexes," *Infocommunications and Radio Technologies*, vol. 6, no. 3, pp. 285–293, 2023, doi: 10.29039/2587-9936.2023.06.3.22. (In Russ.).

References

- D. F. Kronholm et al., Blends of fullerene derivatives, and uses thereof in electronic devices. Patent №: US 8,945,807 B2, date of Patent : Feb. 3, 2015.
- [2] S. A. Bakhramov, A. M. Kokhkharov, U. K. Makhmanov, and B. A. Aslonov, "Self-Organization of Fullerene C60/70 Molecules in Solutions and in the Volume of Drying Drop," *Scientific-technical journal*, vol. 24, iss. 5, Article 6, 2020.
- [3] P. J. F. Harris, "Fullerene Polymers : A Brief Review," *Journal of Carbon Research*, vol. 6, no. 4, p. 71, Nov. 2020, doi: 10.3390/c6040071.
- [4] M. P. Evstigneev, A. S. Buchelnikov, D. P. Voronin, Y. V. Rubin, L. F. Belous, Y. I. Prylutskyy, U. Ritter, "Complexation of C60 fullerene with aromatic drugs," *ChemPhysChem*, vol 14, no. 3, pp. 568–578, 2013.
- [5] S. Prylutska et al., "Water-Soluble Pristine Fullerenes C60 Increase the Specific Conductivity and Capacity of Lipid Model Membrane and form the Channels in Cellular Plasma Membrane," *J. Biomed. Nanotechnol.*, vol. 8, no. 3, pp. 522–527, Jun. 2012, doi: 10.1166/jbn.2012.1404.
- [6] A. Kumar, "Fullerenes for biomedical applications," *Journal of Environmental and Applied Bioresearch*, vol. 3, no. 4, pp. 175–191.
- [7] U. Ritter et al., "Structural Features of Highly Stable Reproducible C60Fullerene Aqueous Colloid Solution Probed by Various Techniques," *Fullerenes, Nanotubes and Carbon Nanostructures*, vol. 23, no. 6, pp. 530–534, Jun. 2015, doi: 10.1080/1536383x.2013.870900.
- [8] M. Chaplin, Water structure and behavior, London : South Bank University, June 2000.

TORKHOV N. A. AFM Study of the Internal Structure... TOPXOB H. A. Исследование внутренней структуры кластеров...

- 293
- [9] P. Scharff et al., "Structure of C60 fullerene in water: spectroscopic data," *Carbon*, vol. 42, no. 5–6, pp. 1203–1206, Jan. 2004, doi: https://doi.org/10.1016/j.carbon.2003.12.053.
- [10] G. V. Andrievsky, V. K. Klochkov, E. L. Karyakina, and N. O. Mchedlov-Petrossyan, "Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy," *Chemical Physics Letters*, vol. 300, iss. 3–4, pp. 392-396,1999, doi: 10.1016/S0009-2614(98)01393-1.
- [11] U. K. Makhmanov, Abdulmutallib Kokhkharov, S. A. Bakhramov, and Donats Erts, "The formation of self-assembled structures of C60 in solution and in the volume of an evaporating drop of a colloidal solution," *Lithuanian Journal of Physics*, vol. 60, no. 3, pp. 194–204, Aug. 2020, doi: 10.3952/physics.v60i3.4306.
- [12] G. V. Andrievsky et al., "Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy," *Chemical Physics Letters*, vol. 364, no. 1-2, pp. 8–17, 2002.
- [13] D. A. Peidys, A. A. Hernandez, and M. P. Evstigneev, "The interplay of enthalpic/entropic factors in nanoparticles' aggregation in solution : The case of fullerene C60," *Journal of Molecular Liquids*, vol. 318, pp. 114043–114043, Nov. 2020, doi: 10.1016/j.molliq.2020.114043.
- [14] U. Ritter et al., "Structural Features of Highly Stable Reproducible C60Fullerene Aqueous Colloid Solution Probed by Various Techniques," *Fullerenes, Nanotubes and Carbon Nanostructures*, vol. 23, no. 6, pp. 530–534, Jun. 2015, doi: 10.1080/1536383x.2013.870900.
- [15] Y. I. Prylutskyy et al., "C60 fullerene aggregation in aqueous solution," *Physical Chemistry Chemical Physics*, vol. 15, no. 23, pp. 9351–9360, May 2013, doi: 10.1039/C3CP50187F.

Information about the author

Nikolay A. Torkhov, Leading Researcher at the Research Laboratory "Flight Dynamics and Control of Unmanned Aerial Systems" of the Institute of the National Technology Initiative, Sevastopol State University, Sevastopol, Russian Federation. ORCID: 0000-0001-8902-6319.