Detection of Dense Clusters of Water Vapor Maser Sources during Powerful Flares in the IRAS 16293-2422
Abstract and keywords
Abstract (English):
Based on long-term monitoring data of the water maser transition at 22.2 GHz from 2019 to 2021 we were able to detect two powerful phenomena in IRAS 16293-2422 that lasted in total about a year and that occurred at radial velocities near 6 and 8 km s–1. In both cases, powerful short flares were located on the top of less powerful, but more prolonged ones (4 and 0.6 kJy). Their radiation initiated the release of more powerful flares. Thanks to long-term detailed observations of water masers, the exist-ence of the several emitting maser spot configurations with very close radial velocities, located in the line of sight of the observer were confirmed for the first time. This made it possible to demonstrate the correctness of the water maser activation hypothesis based on an increase in the amplification length of the maser due to several maser condensations located in the line of sight of the observer. The unsaturated state of the most powerful and shortest maser flares, as well as the saturated state of the weaker ones, has been observed. New important parameters of the water masers and the as-sumed location of the maser spots have been obtained.

Keywords:
star formations, stars with exoplanet, molecules, radio lines, water masers
Text
Publication text (PDF): Read Download
References

1. H. A. Abt, A. E. Gomez, and S. G. Levy, “The frequency and formation mechanism of B2-B5 main-sequence binaries,” The Astrophysical Journal Supplement Series, vol. 74, p. 551, 1990, doi:https://doi.org/10.1086/191508.

2. A. Duquennoy and M. Mayor “Multiplicity among solar-type stars in the solar neighbour-hood. II — Distribution of the orbital elements in an unbiased sample,” Astronomy & Astro-physics, vol. 248, pp. 485–524, 1991.

3. D. Raghavan, “A Survey of Stellar Families: Multiplicity of Solar-Type Stars,” The Astro-physical Journal Supplement Series, vol. 190, no. 1, pp. 1–42, 2010, doi:https://doi.org/10.1088/0067-0049/190/1/1.

4. P. Padoan and A. Nordlund, “The Stellar Initial Mass Function from Turbulent Fragmenta-tion,” The Astrophysical Journal, vol. 576, no. 2, pp. 870–879, 2002, doi:https://doi.org/10.1086/341790.

5. M.-M. Mac Low and R. S. Klessen, “Control of star formation by supersonic turbulence,” Re-views of Modern Physics, vol. 76, no. 1, pp. 125–194, 2004, doi:https://doi.org/10.1103/revmodphys.76.125.

6. P. Andre´, A. Men’shchikov, S. Bontemps et al., “From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey,” Astronomy & As-trophysics, vol. 518, id. L102, 2010.

7. X. Chen, “SMA Observations of Class 0 Protostars: a High Angular Resolution Survey of Protostellar Binary Systems,” The Astrophysical Journal, vol. 768, no. 2, p. 110, 2013, doi:https://doi.org/10.1088/0004-637x/768/2/110.

8. J. J. Tobin, P. D. Sheehan, S. T. Megeath et al., “The VLA/ALMA Nascent Disk and Multi-plicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks,” The Astrophysical Journal, vol. 890, 2020.

9. C. K. Walker, C. J. Lada, E. T. Young, P. R. Maloney, and B. A. Wilking, “Spectroscopic evidence for infall around an extraordinary IRAS source in Ophiuchus,” The Astrophysical Journal, vol. 309, 1986, doi:https://doi.org/10.1086/184758.

10. K. M. Menten, E. Serabyn, R. Guesten, and T. L. Wilson, “Physical conditions in the IRAS 16293-2422 parent cloud,” Astronomy & Astrophysics, vol. 177, no. 1-2, P. L57–L60, 1987.

11. S. A. Dzib, “A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers,” Astronomy & Astrophysics, vol. 614, 2018, doi:https://doi.org/10.1051/0004-6361/201732093.

12. N. Crimier, “The solar type protostar IRAS16293-2422: new constraints on the physical struc-ture,” Astronomy and Astrophysics, vol. 519, 2010, doi:https://doi.org/10.1051/0004-6361/200913112.

13. S. K. Jacobsen, “The ALMA-PILS survey: 3D modeling of the envelope, disks and dust fila-ment of IRAS 16293–2422,” Astronomy & Astrophysics, vol. 612, 2018, doi:https://doi.org/10.1051/0004-6361/201731668.

14. Y. Fukui, “Discovery of seven bipolar outflows by an unbiased survey,” The Astrophysical Journal, vol. 311, 1986, doi:https://doi.org/10.1086/184803.

15. A. Wootten, “The Duplicity of IRAS 16293-2422: A Protobinary Star?” The Astrophysical Journal, vol. 337, p. 858, 1989, doi:https://doi.org/10.1086/167156.

16. C. J. Chandler, C. L. Brogan, Y. L. Shirley, and L. Loinard, “IRAS 16293−2422: Proper Motions, Jet Precession, the Hot Core, and the Unambiguous Detection of Infall,” The Astro-physical Journal, vol. 632, no. 1, pp. 371–396, 2005, doi:https://doi.org/10.1086/432828.

17. L. E. Kristensen, P. D. Klaassen, J. C. Mottram, M. Schmalzl, and M. R. Hogerheijde, “AL-MA COJ = 6–5 observations of IRAS 16293–2422,” Astronomy & Astrophysics, vol. 549, 2012, doi:https://doi.org/10.1051/0004-6361/201220668.

18. A. I. Sargent and S. Beckwith, “Kinematics of the circumstellar gas of HL Tauri and R Mo-nocerotis,” The Astrophysical Journal, vol. 323, p. 294, 1987, doi:https://doi.org/10.1086/165827.

19. V. Agra-Amboage, C. Dougados, S. Cabrit, and J. Reunanen, “Sub-arcsecond [Fe ii] spectro-imaging of the DG Tauri jet,” Astronomy & Astrophysics, vol. 532, 2011, doi:https://doi.org/10.1051/0004-6361/201015886.

20. P. Bjerkeli, “Water around IRAS 15398–3359 observed with ALMA,” Astronomy & Astro-physics, vol. 595, 2016, doi:https://doi.org/10.1051/0004-6361/201628795.

21. A. Wootten, “The Duplicity of IRAS 16293-2422: A Protobinary Star?” The Astrophysical Journal, vol. 337, p. 858, 1989, doi:https://doi.org/10.1086/167156.

22. M. J. Maureira, “Orbital and Mass Constraints of the Young Binary System IRAS 16293-2422 A,” The Astrophysical Journal, vol. 897, no. 1, p. 59, 2020, doi:https://doi.org/10.3847/1538-4357/ab960b.

23. H. Imai, T. Iwata, and M. Miyoshi, “Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission,” Publications of the Astronomical Society of Japan, vol. 51, no. 4, pp. 473–477, 1999, doi:https://doi.org/10.1093/pasj/51.4.473.

24. H. Imai, “Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA I. IRAS 16293-2422 in rho Oph East,” Publications of the Astronomical Society of Japan, vol. 59, no. 6, pp. 1107–1113, 2007, doi:https://doi.org/10.1093/pasj/59.6.1107.

25. A. Hernández-Gómez, “Modelling the abundance structure of isocyanic acid (HNCO) towards the low-mass solar type protostar IRAS 16293–2422,” Monthly Notices of the Royal Astro-nomical Society, vol. 483, no. 2, pp. 2014–2030, 2018, doi:https://doi.org/10.1093/mnras/sty2971.

26. M. H. D. Van der Wiel, “The ALMA-PILS survey: gas dynamics in IRAS 16293−2422 and the connection between its two protostars,” Astronomy & Astrophysics, vol. 626, 2019, doi:https://doi.org/10.1051/0004-6361/201833695.

27. L. Loinard, “New Radio Sources and the Composite Structure of Component B in the Very Young Protostellar System IRAS 16293−2422,” The Astrophysical Journal, vol. 670, no. 2, pp. 1353–1360, 2007, doi:https://doi.org/10.1086/522568.

28. A. E. Volvach, L. N. Volvach, and M. G. Larionov, “Composite powerful short flare of water maser emission in IRAS 16293-2422,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 507, no. 1, 2021, doi:https://doi.org/10.1093/mnrasl/slab096.

29. N. S. Nesterov, A. E. Volvach, I. D. Strepka et al., “22 GHz Radiometer for International VLBI Station SYMEIZ,” Radio Physics and Radio Astronomy, vol. 5, no. 3, pp. 320–322, 2000. (In Russ.).

30. K. J. Johnston, “An Interferometer Map of the Water-Vapor Sources in W49,” The Astrophys-ical Journal, vol. 166, 1971, doi:https://doi.org/10.1086/180731.

31. L. N. Volvach, “Powerful bursts of water masers towards G25.65+1.05,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 482, no. 1, 2018, doi:https://doi.org/10.1093/mnrasl/sly193.

32. I. Shmeld, V. Strelnitski, and V. Muzulev, “Collisional pumping of a cosmic H2O maser in a shock wave,” Soviet Ast., vol. 20, pp. 411–418, 1976.

33. P. Goldreich and J. Kwan, “Astrophysical Masers.IV. Line Widths,” The Astrophysical Jour-nal, vol. 190, p. 27, 1974, doi:https://doi.org/10.1086/152843.

34. B. E. Turner, “Anomalous Emission from Interstellar Hydroxyl and Water (concluded),” Journal of the Royal Astronomical Society of Canada, vol. 64, no. 5, pp. 282–304, 1970.

35. V. S. Strelnitskii, “Interpretation of the H2O maser outburst in Orion,” Pisma v Astronomich-eskii Zhurnal, vol. 8, pp. 165–171, 1982.

36. V. Strelnitski, “Advances in Maser Theory,” Proceedings of the International Astronomical Union, vol. 8, pp. 3–12, 2012, doi:https://doi.org/10.1017/s1743921312006576.

37. J. K. Jørgensen, T. L. Bourke, Q. Nguyen Luong, and S. Takakuwa, “Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422,” Astronomy & Astrophysics, vol. 534, 2011, doi:https://doi.org/10.1051/0004-6361/201117139.

38. J. K. Jørgensen, “Protostellar Holes: Spitzer Space Telescope Observations of the Protostellar Binary IRAS 16293-2422,” The Astrophysical Journal, vol. 631, no. 1, 2005, doi:https://doi.org/10.1086/497003.

39. V. Strel’nitskiy, “Collision-collision pumping of cosmic masers,” Soviet Ast. Let., vol. 6, pp. 196–199, 1980.

40. A. Palma, S. Green, D. J. Defrees, and A. D. McLean, “Collisional excitation of interstellar wa-ter,” The Astrophysical Journal Supplement Series, vol. 68, p. 287, 1988, doi:https://doi.org/10.1086/191289.

41. N. D. Kylafis and C. Norman, “On pumping astronomical masers,” The Astrophysical Jour-nal, vol. 300, 1986, doi:https://doi.org/10.1086/184606.

42. V. S. Strelnitskij, “On the nature of the strong cosmic H2O masers,” Monthly Notices of the Royal Astronomical Society, vol. 207, no. 2, pp. 339–354, 1984, doi:https://doi.org/10.1093/mnras/207.2.339.

43. M. J. Reid, “The distance to the center of the Galaxy – H2O maser proper motions in Sagittari-us B2(N),” The Astrophysical Journal, vol. 330, p. 809, 1988, doi:https://doi.org/10.1086/166514.

44. V. Strelnitski, J. Alexander, S. Gezari, B. P. Holder, J. M. Moran, and M. J. Reid, “H2O Ma-sers and Supersonic Turbulence,” The Astrophysical Journal, vol. 581, no. 2, pp. 1180–1193, 2002, doi:https://doi.org/10.1086/344244.

45. V. L. Fish, M. Gray, W. M. Goss, and A. M. S. Richards, “Flares and proper motions of ground-state OH masers in W75N,” Monthly Notices of the Royal Astronomical Society, vol. 417, no. 1, pp. 555–566, 2011, doi:https://doi.org/10.1111/j.1365-2966.2011.19297.x.

46. A. E. Volvach, L. N. Volvach, and M. G. Larionov, “Unusually powerful flare activity of the H2O maser feature near a velocity of −60 km s−1 in W49N,” Monthly Notices of the Royal As-tronomical Society: Letters, vol. 496, no. 1, 2020, doi:https://doi.org/10.1093/mnrasl/slaa104.

47. L. N. Volvach, A. E. Volvach, M. G. Larionov, G. C. MacLeod, and P. Wolak, “Unusual flare activity in the extreme-velocity −81 km s−1 water-maser feature in W49N,” Monthly No-tices of the Royal Astronomical Society: Letters, vol. 487, no. 1, 2019, doi:https://doi.org/10.1093/mnrasl/slz088.

48. P. Goldreich and D. A. Keeley, “Astrophysical Masers. I. Source Size and Saturation,” The Astrophysical Journal, vol. 174, p. 517, 1972, doi:https://doi.org/10.1086/151514.


Login or Create
* Forgot password?