Abstract and keywords
Abstract (English):
Creation of new functional biocompatible and bioactive materials and efficient systems for the encapsulation, drug delivery and controlled release of various substances in water environments, including in live systems, is an actual task of biophysics and chemistry and also for a number of allied sciences, solution of which is essential important for practical biomedical applications. In this work we have prepared and characterized novel nanocomposite biomimetic functional nanosystems on the basis Langmuir-Blodgett films, vesicles or capsules on the basis membrane complexes including lipids functional aminocontaining amphiphilic compounds, polymers (including biopolymers) and functional inorganic nanoparticles (Fe3O4 and Au). The fabricated systems have been investigated using transmission electron microscopy, atomic_force microscopy, electron paramagnetic resonance.

biomimetic nanostructures, liposomes, DNA, nanoparticles of magnetite
Publication text (PDF): Read Download

1. Freeman A.I., Mayhew E. Targeted drug delivery. Cancer, 1986, vol. 58, pp. 573-583.

2. Svenson S., Robert K. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery Series. Nanostructure Science and Technology, Springer, 2012, 373p.

3. Parveen S., Misra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, vol. 8, no. 2, pp. 147-166.

4. Kataokaa K., Haradaa A., Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001, vol. 47, no. 1, pp. 113-131.

5. Donath E., Sukhorukov G.B., Caruso F., Devis S.A., Möhwald H. Novel Hollow Polymer Shells by Colloid- Templated Assembly of Polyelectrolytes. Angew Chem. Int. Ed. Engl., 1998, vol. 37, 2202 p.

6. Sukhorukov G.B., Donath E., Davis S.A., Lichtenfeld A., Caruso F., Popov V.I., Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A Novel Approach to Colloid Design. Polym. Adv. Technol., 1998, vol. 9, 759 p.

7. Radtchenko I.L., Sukhorukov G.B., Leporatti S., Khomutov G.B., Donath E., Mohwald H. Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of the multilayers and encapsulation of macromolecules into polyelectrolyte capsules. J. Colloid. Interface Sci., 2000, vol. 230, no. 2, pp. 272-280.

8. Sukhorukov G.B., Antipov A., Voigt A., Donath E., Möhwald H. pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol. Rapid Commun, 2001, vol. 22, pp. 44-46.

9. Skirtach A.G., Antipov A.A., Shchukin D.G., Sukhorukov G.B. Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir, 2004, vol. 20, pp. 6988-6992.

10. Radt B., Smith T.A., Caruso F. Optically Addressable Nanostructured Capsules. Adv. Mater, 2004, vol. 16, pp. 2184-2189.

11. Lu Z., Prouty M.D., Guo Z., Golub V.O., Kumar C.S.S.R., Lvov Y.M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co, Au nanoparticles. Langmuir, 2005, vol. 21, pp. 2042-2050.

12. Gorin D.A., Shchukin D.G., Mikhailov A.I., Kohler K., Sergeev S.A., Portnov S.A., Taranov I.V., Kislov V.V., Sukhorukov G.B. Effect of Microwave Radiation on Polymer Microcapsules Containing Inorganic Nanoparticles. Technical Physics Letters, 2006, vol. 32, no. 1, pp. 70-72.

13. Gorin D.A., Shchukin D.G., Koksharov Yu.A., Portnov S.A., Köhler K., Taranov I.V., Kislov V.V., Khomutov G.B., Möhwald H., Sukhorukov G.B. Effect of microwave irradiation on composite iron oxide nanoparticle/polymer microcapsules. Proceedings of SPIE, 2007, vol.6536, no. 653604.

14. Schwendener R.A. Liposomes in biology and medicine. Adv. Exp. Med. Biol., 2007, vol. 620, pp. 117-28.

15. Lasic D.D. Liposomes: from physics to applications. Elsevier, Amsterdam, New York, 1993, 575 p.

16. Wagner A., Vorauer-Uhl K Liposome Technology for Industrial Purposes. Journal of Drug Delivery, 2011, article ID 591325, 9 p.

17. Koning G.A, Eggermont A.M., Lindner L.H., ten Hagen T.L.M. Hyperthermia and Thermosensitive Liposomes for Improved Delivery of Chemotherapeutic Drugs to Solid Tumors. Springer Pharm Res., 2010, pp. 1750-1754.

18. Ranganathan1 R., Madanmohan S., Kesavan A., Baskar G., Ramia Y., Krishnamoorthy, Santosham R., Ponraju D., Rayala S.K., Venkatraman G. Nanomedicine towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomecine, 2012, pp. 1043-1060.

19. Glaser R.W., Leikin S.L., Chernomordik L.V., Pastushenko V.F., Sokirko A.I. Reversible electrical breakdown of lipid bilayers - formation and evolution of pores. Biochimica Et Biophysica Acta, 1988, vol. 940, pp. 275-287.

20. Weaver J.C., Chizmadzhev Y. Theory of electroporation. A review. Bioelectroch Bioener, 1996, vol. 41, pp. 135-160.

21. Widder K.J., Senyei A.E., Scarpelli D.G. Magnetic microspheres:a model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med., 1978, vol. 58, pp. 141-146.

22. Giersig M., Khomutov G.B. (editors) Nanomaterials for application in medicine and biology. Springer, Dordrecht, The Netherlands, 2008, 188 p.

23. Amstad E., Textor M., Reimhult E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale, 2011, vol. 3, no. 7, pp. 2819-2843.

24. Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, vol. 26, pp. 3995-4021.

25. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 1981, vol. 17, pp. 1247-1248.

26. Gulyaev Yu.V., Cherepenin V.A., Vdovin V.A. [et al.] Pulsed electric field-induced remote decapsulation of Nanocomposite liposomes with implanted conducting nanoparticles. Journal of communications technology and electronics, 2015, vol. 60, no. 10, pp. 1097-1108.

Login or Create
* Forgot password?