Infocommunications and Radio Technologies, vol. 1, no. 1, pp. 95–102, 2018. *Инфокоммуникационные и радиоэлектронные технологии*. 2018. Т. 1, № 1. С. 95—102. ISSN: 2587-9936 print / 0000-0000 online DOI: 10.15826/icrt.2018.01.1.07

Расчетно-экспериментальное определение радиационной стойкости КМОП интегральных микросхем при воздействии гамма-излучения¹

¹Богатырев Ю. В., ¹Ластовский С. Б., ²Шведов С. В., ²Лозицкий Е. Г.

¹ Научно-практический центр НАН Беларуси по материаловедению ул. П. Бровки, 19, Минск, 220072, Беларусь bogat@ifttp.bas-net.by ² ОАО «Интеграл» ул. Казинца, 121А, Минск, 220108, Беларусь office@bms.by

Статья поступила 23 ноября 2016 г.

Аннотация: Представлены результаты расчетно-экспериментального определения (прогнозирования) радиационной стойкости двух типов КМОП интегральных микросхем (интерфейсных приемопередатчиков, схем памяти) при воздействии гамма-излучения Со⁶⁰. Получены аналитические дозовые зависимости параметров тестовых МОП-транзисторов и КМОП больших интегральных схем.

Ключевые слова: радиационная стойкость, интегральная микросхема, транзистор, гамма-излучение, прогнозирование.

Для цитирования (ГОСТ 7.0.5—2008): Расчетно-экспериментальное определение радиационной стойкости КМОП интегральных микросхем при воздействии гаммаизлучения / Богатырев Ю. В., Ластовский С. Б., Шведов С. В., Лозицкий Е. Г. // Инфокоммуникационные и радиоэлектронные технологии. 2018. Т. 1, № 1. С. 95—102.

Для цитирования (ГОСТ 7.0.11—2011): Расчетно-экспериментальное определение радиационной стойкости КМОП интегральных микросхем при воздействии гамма-излучения / Ю. В. Богатырев, С. Б. Ластовский, С. В. Шведов, Е. Г. Лозицкий // Инфокоммуникационные и радиоэлектронные технологии. — 2018. — Т. 1, № 1. — С. 95—102.

¹ Статья является расширенной версией доклада, представленного на 26-й Международной конференции «СВЧ-техника и телекоммуникационные технологии» — КрыМиКо'2016 (Севастополь, 4—10 сент. 2016 г.).

Calculation-experimental determination of CMOSintegrated microcircuits' radiation hardness under the influence of gamma radiation

Yu. V. Bogatyrev¹, S. B. Lastovski¹, S. V. Shwedov², E. G. Lozitski²

¹ Scientific-Practical Materials Research Centre NAS of Belarus 19, P. Brovka Str., Minsk, 220072, Belarus bogat@ifttp.bas-net.by ² Joint Stock Company "Integral" 121A, Kazintsa Str., Minsk, 220108, Belarus office@bms.by

Received on November 23, 2016

Abstract: The results of calculation-experimental determination (forecasting) of two types of CMOS-integrated microcircuits' radiation hardness (interface transceivers, memory units) under the influence of Co^{60} gamma radiation are submitted. Analytical dose dependences of parameters of test MOS transistors and CMOS large-scale integrated circuits are obtained.

Keywords: radiation hardness, integrated microcircuit, transistor, gamma radiation, forecasting.

For citation (IEEE): Yu. V. Bogatyrev, S. B. Lastovski, S. V. Shwedov, and E. G. Lozitski, "Calculation-experimental determination of CMOS integrated microcircuits' radiation hardness under the influence of gamma radiation," *Infocommunications and Radio Technologies*, 2018, vol. 1, no. 1, pp. 95–102. (In Russ.). doi: 10.15826/icrt.2018.01.1.07

1. Введение

Развитие космических исследований и ядерной энергетики, использование ионизирующих излучений в промышленности требуют создания полупроводниковых приборов, устойчивых к проникающей радиации, а также разработки методов прогнозирования их радиационной стойкости.

За последние годы достигнуты определенные успехи в исследовании радиационных эффектов в МОП-приборах и разработке методов моделирования (прогнозирования) радиационной стойкости МОП-транзисторов (МОПТ) и больших интегральных схем (БИС) на их основе [1—5]. Но в связи с различиями в технологии у разных изготовителей эти методы нельзя непосредственно использовать для конкретных типов МОП-приборов. Следовательно, большой практический интерес имеют расчет-

Bogatyrev Yu. V. et al. Calculation-experimental definition of CMOS integrated microcircuits'... Богатырев Ю. В. и др. Расчетно-экспериментальное определение радиационной стойкости...

но-экспериментальные методы прогнозирования радиационного поведения МОП-приборов с помощью тестового облучения и создания математических моделей поведения приборных структур при воздействии радиации [6, 7].

В данной работе приведены результаты применения расчетноэкспериментальных методов определения (прогнозирования) радиационной стойкости КМОП БИС различного назначения (интерфейсных приемопередатчиков, запоминающих устройств) при воздействии гаммаизлучения Со⁶⁰.

2. Объекты исследований и методика эксперимента

Объектами исследований являлись следующие микроэлектронные изделия производства ОАО «Интеграл»:

1) КМОП БИС интерфейсного приемопередатчика манчестерского кода (прототип: HI1573 компании Holt). КМОП БИС — сдвоенный приемопередатчик манчестерского кода с принудительной установкой выходов приемника в состояние логического «0». Основные технические характеристики: ток потребления (нет передачи информации) — $I_{CC} \le 10$ мА; динамический ток потребления (непрерывная передача информации) — $I_{OCC2} \le 500$ мА; напряжение питания — $U_{CC} = 3.3$ В ± 0.15 В.

2) КМОП СБИС статического оперативного запоминающего устройства (СОЗУ) (прототип: ACT–S512K8 компании Aeroflex Circuit Technology) применяется для асинхронного и синхронного чтения/записи и хранения информации в блоках оперативной памяти вычислительных систем. Основные технические характеристики: информационная емкость — 4 Мбит (512 К × 8); статический ток потребления — $I_{CC} = 5,0$ мА; динамический ток потребления (при $U_{CC} = 5,5$ В) — $I_{O} = 120$ мА; время выборки адреса — 25 нс.

3) СБИС СОЗУ информационной емкостью 256 Кбит (32 К × 8); микросхемы изготовлены по КМОП-технологии «кремний на изоляторе» (КНИ) с нормами проектирования 0,5 мкм; ячейки памяти КМОП/КНИ СБИС СОЗУ содержат шесть транзисторов; толщина пленки кремния в транзисторных МОП/КНИ-структурах составляет 0,2 мкм, толщина скрытого окисла — 0,4 мкм.

4) Тестовые МОП-транзисторы с каналами n- и p-типа изготавливались по субмикронной планарно-эпитаксиальной технологии. Тестовые МОПТ имели длину канала L = 0,35 мкм и ширину канала W = 10,0 мкм.

Облучение образцов гамма-квантами Co^{60} с энергией 1,25 МэВ проводилось на гамма-установке «Исследователь» при температуре 300 К. Мощность дозы гамма-излучения составляла 15 рад/с, доза D = $10^3 - 5 \times 10^6$ рад. Контроль параметров тестовых МОПТ осуществлялся с помощью автоматизированного измерителя параметров полупроводниковых приборов ИППП-1/6. Измерение параметров КМОП БИС проводилось с помощью автоматизированной измерительной системы АИС «Дакота».

3. Расчетно-экспериментальные методы определения (прогнозирования) радиационной стойкости КМОП БИС

Расчетно-экспериментальный метод прогнозирования радиационной стойкости МОП-приборов, разработанный нами [7], включает следующие основные элементы: тестовое облучение испытательной выборки образцов МОП-приборов (для каждой партии пластин); контроль изменений основных параметров МОП-приборов при облучении; математическая обработка (аппроксимация) экспериментальных результатов испытаний с применением регрессионного анализа.

На основе экспериментальных данных были рассчитаны аналитические зависимости параметров тестовых МОПТ и КМОП БИС от дозы облучения. Для расчетов использовалась программа регрессионного анализа из пакета OriginPRO 7.0.²

На рис. 1а показаны результаты аппроксимации дозовых зависимостей изменений тока утечки $I_{L,p}$ тестовых субмикронных (0,35 мкм) МОПТ с р-каналом, а на рис. 1b — тока утечки $I_{L,n}$ МОПТ с п-каналом при облучении в активном электрическом режиме.

Fig. 1. Dependences of leakage current of p-MOSFET (a) and n-MOSFET (b) versus a dose (points – experiment, lines – computation)

² http://www.OriginLab.com (accessed 30 December 2015).

Полученные аппроксимирующие зависимости параметров тестовых МОПТ от дозы гамма-излучения (рис. 1) описываются следующими выражениями:

$$I_{L,p} = A_0 + B_1 D + B_2 D^2;$$
(1)

$$I_{L.n} = A_1 \exp(D/k_1) + A_{01}.$$
 (2)

Здесь $A_0 = 8,8602 \times 10^{-12}; B_1 = 7,99114 \times 10^{-12}; B_2 = -5,4458 \times 10^{-13}; A_1 = 1,0327 \times 10^{-12}; k_1 = 0,16702; A_{01} = 3,6334 \times 10^{-11}.$

На рис. 2 показаны результаты аппроксимации дозовой зависимости тока потребления I_{CC} КМОП БИС приемопередатчика (образцы № 1 и 2). Полученные зависимости тока потребления КМОП БИС от дозы D гамма-излучения описываются следующими выражениями:

$$I_{CC1} = A_{02} + B_3 D + B_4 D^2 + B_5 D^3 \quad (\text{obp. No } 1);$$
(3)

$$I_{CC2} = A_{03} + B_6 D + B_7 D^2 + B_8 D^3 \qquad (\text{obp. } N_{\text{O}} 2).$$
(4)

Здесь $A_{02} = 7,33385$; $B_3 = -4,42766$; $B_4 = 1,09121$; $B_5 = -0,08759$; $A_{03} = 7,18924$; $B_6 = -4,18296$; $B_7 = 1,00074$; $B_8 = -0,07838$.

Рис. 2. Дозовые зависимости тока потребления КМОП БИС приемопередатчика (точки эксперимент, линии — расчет); 1 и 1' — обр. № 1; 2 и 2' — № 2. Fig. 2. Dependences of CMOS LSI transceivers' consumption current

transceivers' consumption current versus a dose (points – experiment, lines – computation); 1 & 1' – samp. No. 1; 2 & 2' – No. 2

На рис. 3 показаны результаты аппроксимации дозовой зависимости статического тока потребления I_{CCS} КМОП/КНИ СБИС СОЗУ 256 К.

Полученная аппроксимирующая зависимость тока потребления КМОП/КНИ СБИС от дозы гамма-излучения описывается следующим выражением:

$$I_{CCS} = A_2 \exp(D/k_2) + A_{04}. \tag{5}$$

Здесь $A_2 = 5,8067 \times 10^{-7}; k_2 = 187573,392; A_{04} = 5,1448 \times 10^{-6}.$

На рис. 4 показаны результаты аппроксимации дозовой зависимости статического тока потребления I_{CC} КМОП СБИС СОЗУ 4М.

Полученная аппроксимирующая зависимость тока потребления КМОП СБИС от дозы гамма-излучения описывается следующим выражением:

$$I_{CC} = A_3 + B_9 D + B_{10} D^2.$$
 (6)
Здесь $A_3 = 0,00103; B_9 = 9,67764 \times 10^{-5}; B_{10} = -1,63703 \times 10^{-5}.$

Рассмотрим расчетно-экспериментальный метод прогнозирования радиационной стойкости субмикронных (0,35 мкм) КМОП СБИС по параметрам элементной базы при воздействии гамма-излучения. Для этого используем приведенные выше аналитические дозовые зависимости тока утечки $I_L(D)$ *n*-МОПТ (2), а также тока потребления $I_{CC}(D)$ КМОП СБИС СОЗУ (6). Из выражения (2) можно найти величину определенной дозы D:

$$D = k_1 \ln[(I_{L.n} - A_{01})/A_1],$$
(7)

и после подстановки (7) в (6) получим (для диапазона доз $D = 0 \div 10^6$ рад):

$$I_{CC} = A_3 + B_9 k_1 ln[(I_{L.n} - A_{01})/A_1] + B_9 \{k_1 ln[(I_{L.n} - A_{01})/A_1]\}^2.$$
 (8)

Проведем проверку: например, для $D=10^6$ рад при $I_{\rm L.n}=4,477\times10^{-10}$ A из (8) получим расчетную величину $I_{\rm CC}=1,0766$ мА. Экспериментальное значение $I_{\rm CC}=1,1133$ мА. Отсюда: погрешность прогнозирования составит 3,3 %.

Полученные аналитические зависимости (1—8) могут быть использованы для прогнозирования радиационной стойкости данных типов КМОП БИС в зависимости от дозы гамма-излучения. В связи с различиями в технологии изготовления микросхем на разных предприятиях полученные расчетные зависимости необходимо дополнительно корректировать для прогнозирования радиационной стойкости КМОП БИС в пределах каждой партии изделий одного типа. При этом для уточнения значений постоянных коэффициентов в уравнениях (1—8) проводится тестовое облучение испытательной выборки из отдельной партии изделий для каждого типономинала КМОП БИС. Объем выборки БИС определяется в соответствии с техническими условиями.

4. Заключение

Предложен расчетно-экспериментальный метод прогнозирования радиационной стойкости МОП-приборов, включающий: тестовое облучение испытательной выборки образцов МОП-приборов; контроль изменений основных параметров МОП-приборов при облучении; математическую обработку (аппроксимацию) экспериментальных результатов испытаний с применением регрессионного анализа. В частности, разработан расчетно-экспериментальный метод прогнозирования радиационной стойкости субмикронных (0,35 мкм) КМОП СБИС по параметрам элементной базы при воздействии гамма-излучения.

Получены аналитические дозовые зависимости параметров тестовых МОП-транзисторов и КМОП-микросхем, которые могут быть использованы для прогнозирования радиационной стойкости определенных типов КМОП БИС (прототипов: HI1573 и ACT-S512K8). В связи с различиями в технологии изготовления микросхем на разных предприятиях полученные расчетные зависимости необходимо дополнительно корректировать для прогнозирования радиационной стойкости КМОП БИС в пределах каждой партии изделий одного типа.

Источники финансирования

Статья подготовлена по результатам исследований, проведенных в рамках проекта Белорусского республиканского фонда фундаментальных исследований № Ф15-038.

Список литературы

- 1. Першенков В. С., Попов В. Д., Шальнов А. В. Поверхностные радиационные эффекты в элементах интегральных микросхем. М. : Энергоатомиздат, 1988. 256 с.
- Коршунов Ф. П., Богатырев Ю. В., Вавилов В. А. Воздействие радиации на интегральные микросхемы. Минск : Наука и техника, 1986. 254 с.
- 3. Чумаков А. И. Действие космической радиации на интегральные схемы. М. : Радио и связь, 2004. 320 с.
- Claeys C., Simoen E. Radiation Effects in Advanced Semiconductor Materials and Devices. Berlin : Springer, 2002. 402 c.
- 5. Barnaby H. J. Total-Ionizing-Dose Effects in Modern CMOS Technologies // IEEE Trans. Nucl. Science. 2006. T. 53, № 6. C. 3103–3121.
- Согоян А. В., Никифоров А. Ю., Чумаков А. И. Подход к прогнозированию радиационной деградации параметров КМОП ИС с учетом сроков и условий эксплуатации // Микроэлектроника. 1999. Т. 28, № 4. С. 263—275.
- Метод прогнозирования радиационной стойкости КМОП-интегральных схем / Коршунов Ф. П., Богатырев Ю. В., Белоус А. И., Шведов С. В., Ластовский С. Б., Кульгачев В. И. // Вопросы атомной науки и техники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру. 2009. Вып. 1. С. 45—49.

Acknowledgements

The paper is based on the research results, which were conducted in the framework of project of the Belarus Republic Foundation for Basic Research No. Φ 15-038.

References

- V. S. Pershenkov, V. D. Popov, and A. V. Shal'nov, *Poverkhnostnye radiatsionnye effekty v* elementakh integral'nykh mikroskhem [Surface radiation effects in elements of integrated circuits]. Moscow: Energoatomizdat, 1988. (In Russ.).
- [2] F. P. Korshunov, Y. V. Bogatyrev, and V. A. Vavilov, *Vozdeistvie radiatsii na integral'nye mikroskhemy* [Effects of radiation on integrated circuits]. Minsk: Nauka i tekhnika, 1986. (In Russ.).
- [3] A. I. Chumakov, *Deistvie kosmicheskoi radiatsii na integral'nye skhemy* [Effects of cosmic radiation on integrated circuits]. Moscow: Radio i svyaz', 2004. (In Russ.).
- [4] C. Claeys and E. Simoen, *Radiation Effects in Advanced Semiconductor Materials and De*vices. Berlin: Springer, 2002.
- H. J. Barnaby, "Total-ionizing-dose effects in modern CMOS technologies," in *IEEE Transactions on Nuclear Science*, 2006, vol. 53, no. 6, pp. 3103–3121. doi: 10.1109/TNS.2006.885952
- [6] A. V. Sogoyan, A. I. Chumakov, and A. Y. Nikiforov, "Method for Predicting CMOS Parameter Degradation Due to Ionizing Radiation with Regard to Operating Time and Conditions," *Mikroelektronika*, vol. 28, no. 4, pp. 263–275, 1999. (In Russ.).
- [7] F. P. Korshunov, Y. V. Bogatyryov, A. I. Belous, S. V. Shvedov, S. B. Lastovsky, and V. I. Kulgachev, "Method of the MOS IC radiation resistance prediction," *Quest. At. Sci. Tech. Ser. Phys. Radiat. Eff. Radio-Electronic Equip.*, no. 1, pp. 45–49, 2009. (In Russ.).