Инфокоммуникационные и радиоэлектронные технологии. 2018. Т. 1. № 4. С. 389—399. Infocommunications and Radio Technologies, vol. 1, no. 4, pp. 389–399, 2018. ISSN: 2587-9936 print / 0000-0000 online DOI: 10.15826/icrt.2018.01.4.30

УДК 621.385

Терагерцовый генератор — сферотрон

Кураев А. А., Матвеенко В. В.

Белорусский государственный университет информатики и радиоэлектроники ул. П. Бровки, 6, Минск, 220013, Беларусь kurayev@bsuir.by

> Получено: 11 сентября 2018 г. Отрецензировано: 20 сентября 2018 г. Принято к публикации: 25 сентября 2018 г.

Аннотация: Выполнено моделирование терагерцового генератора — сферотрона. Показано, что в таком генераторе весьма простой конструкции достижимы КПД 30 % при токе пучка в импульсе 1—10 кА и напряжении около 45 кВ.

Ключевые слова: сферотрон, монотрон, КПД, несинхронное взаимодействие, большие мощности, двусферический резонатор.

Для цитирования (ГОСТ 7.0.5—2008): Кураев А. А., Матвеенко В. В. Терагерцовый генератор — сферотрон // Инфокоммуникационные и радиоэлектронные технологии. 2018. Т. 1, № 4. С. 389—399.

Для цитирования (ГОСТ 7.0.11—2011): Кураев, А. А. Терагерцовый генератор — сферотрон / А. А. Кураев, В. В. Матвеенко // Инфокоммуникационные и радиоэлектронные технологии. — 2018. — Т. 1, № 4. — С. 389—399.

Terahertz generator – spherotron

A. A. Kurayev and V. V. Matveyenka Belarusian State University of Informatics and Radioelectronics 6, P. Brovki st., Minsk, 220013, Belarus kurayev@bsuir.by

> Received: September 11, 2018 Peer-reviewed: September 20, 2018 Accepted: September 25, 2018

Abstract: A simulation of terahertz generator – spherotron was performed. It was shown such a generator has a very simple design and efficiency of 30 %, when beam current in a pulse of 1-10 kA and a voltage about 45 kV.

Keywords: spherotron, monotron, efficiency, non-synchronous interaction, high power, two-spherical resonator.

For citation (IEEE): A. A. Kurayev and V. V. Matveyenka, "Terahertz generator – spherotron," *Infocommunications and Radio Technologies*, vol. 1, no. 4, pp. 389–399, 2018. doi: 10.15826/icrt.2018.01.4.30

1. Введение

Несинхронное взаимодействие электронов с электромагнитным полем — сравнительно мало исследованная область в физике и электронике СВЧ. Такое взаимодействие, в частности, реализуется в монотронах — однорезонаторных генераторах с шириной пролетного промежутка, сравнимой с длиной волны рабочего типа колебаний [1, 2]. Однако эти генераторы с плоскопараллельным зазором резонатора обеспечивают неприемлемо низкий КПД для мощных приборов (порядка 6 %). С другой стороны, присущие несинхронному взаимодействию недостатки группирования компенсируются особенностями индивидуального взаимодействия электронов при движении в нарастающем несинхронном электромагнитном поле (квадратичные силы Миллера) [3]. Это подтверждено при расчете обращенного монотрона на коаксиальном резонаторе (диотрона), где амплитуда ВЧ электрического поля изменяется пропорционально 1/r (электроны движутся к центру) [4]. В данной статье рассматривается схема сферотрона — монотрона на двусферическом резонаторе, где амплитуда поля имеет еще более сильную зависимость от r: $1/r^2$. Это позволяет существенно повысить КПД прибора, причем, при больших токах электронного потока.

2. Принципиальная схема сферотрона

Схема сферотрона изображена на рисунке 1. Здесь 1 — катод, 2 — кольцевой первый анод, его напряжение u_1 , 3 — двусферический резонатор, находится под потенциалом u_0 относительно катода, 4 — очертания электронного потока; 5 — камера системы охлаждения коллектора; 6 — вакуумно-плотные изоляционные керамические шайбы. Ось *z* совмещена с осью пучка. Меридианный угол 9 сферической системы координат отсчитывается от оси *z* (для пучка 9=0).

Рис. 1. Схема сферотрона: 1 — катод; 2 — кольцевой анод; 3 — двусферический резонатор; 4 — электронный поток; 5 — камера охлаждения; 6 — вакуумно-плотные шайбы.

На рисунке 1 также указано распределение силовых линий электрического поля резонатора на колебании E_{310} . Размеры резонатора определяются радиусами полусфер: a — большой, b — малый. Вывод энергии на рисунке 1 не указан. Он может быть реализован в виде прямоугольного волновода, связанного с резонатором через азимутальную щель или окно в стенке внешней сферы у торца резонатора.

При большой мощности сферотрона по азимуту резонатора могут быть сделаны несколько таких выводов энергии. Вместо волновода может быть использован выходной рупор, облучающий внешнюю фокусирующую электромагнитный луч антенну.

3. Поля в резонаторе и условия резонанса

Поле колебания E_{n10} двусферического резонатора можно рассматривать как суперпозицию расходящихся (запаздывание (-k·r)) и сходящихся (обратное запаздывание (k·r)) волн фиктивного элементарного электрического источника, находящегося в центре сфер резонатора. Здесь $k=2\pi/\lambda=\omega/c$ — волновое число в вакууме; λ — длина волны, ω — угловая частота, c — скорость света в пустоте.

Используя теорию сферических волн элементарного электрического излучателя [5], получаем следующие формулы компонент поля колебания E_{n10} как результат интерференций, расходящихся и сходящихся сферических волн:

$$E_{r} = E_{m} \cos \omega t \left(\frac{\cos kr}{\left(kr\right)^{2}} - \frac{\sin kr}{\left(kr\right)^{3}} \right) \cos \vartheta$$

$$E_{\vartheta} = \frac{E_{m}}{2} \cos \omega t \left(\frac{\sin kr}{kr} + \frac{\cos kr}{\left(kr\right)^{2}} - \frac{\sin kr}{\left(kr\right)^{3}} \right) \sin \vartheta \qquad (1)$$

$$H_{\varphi} = -\frac{E_{m}}{2W^{0}} \sin \omega t \left(\frac{\cos kr}{kr} - \frac{\sin kr}{\left(kr\right)^{2}} \right) \sin \vartheta$$

где $W^0 = \sqrt{\frac{\mu_0}{\epsilon_0}}$ — волновое сопротивление вакуума.

Резонансные значения радиусов сфер резонатора a и b находятся из условия $E_9(a)=0$; $E_9(b)=0$.

Или, используя (1):

$$\sin ka + \frac{\cos ka}{ka} - \frac{\sin ka}{(ka)^2} = 0$$

$$\sin kb + \frac{\cos kb}{kb} - \frac{\sin kb}{(kb)^2} = 0$$
(2)

Граничные условия на торцевой стенке резонатора, как следует из формулы (1) при $\vartheta = \pi/2$ автоматически выполняется: $E_r = 0$, H_{φ} параллельна поверхности торца.

В дальнейших формулах удобно перейти к безразмерным переменным: $\overline{r} = kr$

4. Уравнение движения электронов

Используя особенности конструкции сферотрона положим, что в области прохождения электронного потока $\Im \approx 0$. При этом $E_9 \approx 0$ и $H_9 \approx 0$. Релятивистское уравнение движения электронов в таком приближении имеет вид:

$$\frac{d\beta_i}{d\theta} = -\left(1 - \beta_i^2\right)^{-\frac{3}{2}} (E_r + E_r^{n_3})$$

$$\frac{d\overline{r_i}}{d\theta} = \beta_i, \quad i = \overline{0, N - 1}$$
(3)

Здесь *i* — номер фазовой траектории электрона, *N* — число принятых в расчете фазовых траекторий; в поисковых расчетах N = 64, при уточнении результата N = 200. $\beta_i = v_i/c$; v_i — скорость электрона в направлении — $r; \theta = \omega t$;

$$E_r = A_1 \cos \theta \left(\frac{\cos \overline{r_i}}{\left(\overline{r_i}\right)^2} - \frac{\sin \overline{r_i}}{\left(\overline{r_i}\right)^3} \right) \,,$$

где $A_1 = \frac{e}{m_0 \omega c} E_m$; *е*, m_0 — соответственно заряд и масса покоя электрона.

Напряженность поля пространственного заряда, создаваемого сферическими по сечению пучка заряженными крупными частицами *i*, *j* выражается как [5]

$$E_r^{n_3} = \frac{eI_0}{m_0 c^2 \alpha} W^0 \cdot \frac{1}{N} \sum_{j=0 \atop j \neq i}^{N-1} \left[\frac{\overline{b}}{\overline{r_j}} \frac{\overline{a} - \overline{r_j}}{\overline{a} - \overline{b}} \Phi \begin{pmatrix} 0, \overline{r_i} < \overline{r_j} \\ 1, \overline{r_i} > \overline{r_j} \end{pmatrix} \right], \text{ rge } \overline{a} = ka , \ \overline{b} = kb ;$$

 α — отношение площади сферического сечения пучка на входе к площади сферы $4\pi a$; в расчетах α =0,01, *i* — номер данной крупной частицы, *j* — номер частицы-источника.

Начальные условия к системе уравнений (3) задаются следующим образом:

$$\beta_i(0) = -\beta_0, \ \overline{r_i}(0) = \overline{a}; \quad \theta|_0 = 2\pi i/N \tag{4}$$

Конец расчета траектории проводится по условию $\overline{r_i} = \overline{b}$.

КПД взаимодействия определяется по потери энергии электронным потоком:

$$\eta_{e}(\overline{b}) = \frac{1}{N} \sum_{i=0}^{N-1} \frac{\gamma_{i}(b) - \gamma_{0}}{1 - \gamma_{0}}$$

$$\gamma_{i}(\overline{b}) = \left(1 - \beta_{i}^{2}(\overline{b})\right)^{-\frac{1}{2}}, \quad \gamma_{0} = \left(1 - \beta_{0}^{2}\right)^{-\frac{1}{2}}$$

$$(5)$$

5. Результаты расчета и оптимизации

В результате расчета сферотрона найдены три варианта с одинаковым значением $\overline{b} = 2,7437$.

Вариант 1: \bar{a} =12,4859 (мода E_{310} резонатора).

Зона генерации этого варианта в координатах β_0 , *A* приведена на рисунке 2. Как следует из рисунка, максимальный $\eta_e = 0,28$ и находится в области $\beta_0 \sim 0,45$, $A \sim 4,25$. Зона генерации весьма широкая по *A* и β_0 , это говорит о некритичности режима генерации.

Вариант 2: $\bar{a} = 9,3166$ (мода E_{210} резонатора).

Зона генерации этого варианта показана на рисунке 3. Максимальный $\eta_e = 0,33$, т.е. несколько выше, чем в варианте 1. Это значение достигается в районе $A \sim 4$, $\beta_0 \sim 0,405$. Зона также достаточно широкая по A и β_0 .

Вариант 3: \bar{a} = 6,1168 (мода E_{110} резонатора).

Зона генерации этого варианта изображена на рисунке 4. Здесь КПД достигает значения $\eta_e = 0,35$ при $\beta_0 \sim 0,402$, $A \sim 3,5$. Зона, как и в предыдущих вариантах весьма широка.

Рис. 2. Зоны генерации по КПД варианта 1 в координатах β_0 , *A*. Fig. 2. Efficiency generation zones of option 1 for coordinates β_0 , *A*

KURAYEV A. A. et al. Terahertz generator – spherotron КУРАЕВ А. А. и др. Терагерцовый генератор — сферотрон

Fig. 4. Efficiency generation zones of option 3 for coordinates β_0 , *A*

Важным представляется вопрос о режиме возбуждения генератора: мягкий или жесткий? Как показано в [4] ответ на этот вопрос дает исследование зависимости $\frac{A^2}{\eta_{a}(A)}$ от *A*. Дело в том, что рабочий ток при заданной нагруженной добротности Q пропорционален $\frac{A^2}{\eta_* Q}$. Поэтому в мягком режиме возбуждения $\frac{A^2}{\eta_c(A)}$ должна монотонно возрастать с ростом амплитуды поля, что соответствует росту рабочего тока вместе с А. $A^{2/\eta(A)}$ ····· Режим 1 Режим 2 Режим 3 120 100 80 60 40 A 20 0 0.5 1 1.5 2 2.5 3 3.5 4.5 4

Рис. 5. Характеристики режимов возбуждения вариантов сферотронов: точечная линия ··· вариант 1, штриховая линия --- вариант 2, сплошная линия — вариант 3. Fig. 5. Excitation mode characteristics of spherotron variants: dotted line ··· option 1, dashed line --- option 2, solid line — option 3 Как следует из рисунка 5, зависимости $\frac{A^2}{\eta_e(A)}$ от A для всех трех ва-

риантов монотонно возрастающие (производная всех кривых положитель-

на). Таким образом, режим возбуждения во всех трех вариантах мягкий, рабочий ток превышает пусковой. Поскольку пусковой ток пропорциона-

лен $\frac{A^2}{\eta_e(A)}$ при $A \rightarrow 0$, то при одинаковой нагруженной добротности резо-

натора [4] пусковой ток первого варианта превосходит ток третьего варианта более чем в два раза.

Большой интерес представляет также зависимости эффективности (η_e) рассмотренных вариантов от величины тока пучка. Такие зависимости приведены на рисунке 6. Как следует из приведенных на рисунке 6 данных, наименьшую зависимость от I_0 имеет вариант 3: даже при $I_0 = 20$ кА его η_e остается на уровне 0,3. Заметим, что черенковские релятивистские генераторы утрачивают эффективность уже при $I_0 = 3$ —4 кА [5]. Дело в том, что в этих приборах при больших токах пространственный заряд разрушает фазовую группировку, в сферотроне же при несинхронном взаимодействии эта группировка не играет определяющей роли, существенна роль квадратичных сил.

Рис. 6. Зависимости η_e от тока пучка I_0 для вариантов сферотронов: точечная линия ··· вариант 1, штриховая линия --- вариант 2, сплошная линия — вариант 3.

Fig. 6. Dependences of η e on the beam current I_0 for spherotron variants: dotted line \cdots option 1, dashed line \cdots option 2, solid line - option 3 Вариант 1 наиболее чувствителен к величине I_0 . Однако он отличается наибольшей шириной электронного зазора (порядка 1,5 λ), что дает преимущество в КВЧ диапазоне.

Заметим, что в статье рассмотрены лишь частные варианты сферотрона (с одинаковым \overline{b}). Резонансных значений \overline{b} и \overline{a} , как следует из (2), бесконечно много. Возможно, другие комбинации \overline{b} и \overline{a} дадут более привлекательные результаты как по η_e , так и по размеру $\overline{a} - \overline{b}$.

6. Заключение

Приведенные данные расчета выходных характеристик сферотрона указывают на несомненную перспективность этого прибора. Так, релятивистские сильноточные черенковские генераторы имеют электронный КПД в пределах 8...22% [6]. КПД сферотрона достигает 35% при килоамперных уровнях тока. При этом его конструкция несравненно проще релятивистской ЛОВ и не требует магнитной фокусирующей системы.

В то же время сферотрон перспективен в КВЧ диапазоне: длина зазора резонатора достигает 1,5 длин волн, в отличие от малых долей длины волны в приборах О-типа.

Список литературы

- 1. Калинин В. И., Герштейн Г. М. Введение в радиофизику. М. : ГИТТЛ, 1957. С. 513.
- 2. Шевчик В. Н. Основы электроники сверхвысоких частот. М. : Сов. радио, 1959. С. 96.
- Кравченко В. Ф., Кураев А. А., Синицын А. К. Несинхронные взаимодействия // Успехи физических наук. 2007. Т. 177, № 5. С. 511—534.
- 4. Кураев А. А., Синицын А. К. Коаксиальный диодный генератор-диотрон // Радиотехника и электроника. 1997. Т. 42, № 2. С. 214—219.
- 5. Батыгин В. В., Топтыгин И. Н. Сборник задач по электродинамике. М. : ГИФМЛ, 1962. С. 480.
- 6. Канавец В. И., Сандалов А. Н. Релятивистские генераторы и усилители СВЧ-излучения // В кн. : Итоги науки и техники ВИНИТИ. М. : «Электроника» 1985. № 17. С. 82—168.

References

- V. I. Kalinin and G. M. Gershteyn, *Vvedeniye v radiofiziku* [Introduction to radiophysics]. Moscow : GITTL, 1957. (In Russ.).
- [2] V. N. Shevchik, *Osnovy elektroniki sverkhvysokikh chastot* [Fundamentals of ultra-high frequency electronics]. Moscow : Sovetskoye radio, 1959. (In Russ.).
- [3] V. F. Kravchenko et al. "Nesinkhronnyye vzaimodeystviya [Non-synchronous interactions]," Advances in Physical Sciences, vol. 177. no. 5, pp. 511–534, 2007. (In Russ.).
- [4] A. A. Kurayev and A. K. Sinitsyn, "Koaksial'nyy diodnyy generator-diotron [Coaxial diode generator-diotron]," *Radiotekhnika i elektronika*, vol. 42, no. 2, pp.214–219, 1997. (In Russ.).

- [5] V. V. Batygin and I. N. Toptygin, *Sbornik zadach po elektrodinamike* [Collection of problems in electrodynamics]. Moscow: GIFML. 1962. (In Russ.).
- [6] V. I. Kanavets and A. N. Sandalov, "*Relyativistskiye generatory i usiliteli SVCH-izlucheniya* [Relativistic Generators and Microwave Amplifiers]," Moscow: Elektronika, no. 17, pp.82–168, 1985. (In Russ.).

Информация об авторах

Кураев Александр Александрович, доктор физико-математических наук, почетный профессор Белорусского государственного университета информатики и радиоэлектроники, г. Минск, Беларусь.

Матвеенко Владимир Владимирович, кандидат физико-математических наук, доцент кафедры вычислительных методов и программирования Белорусского государственного университета информатики и радиоэлектроники, г. Минск, Беларусь.

Information about the authors

Alexander A. Kuraev, Dr. Sci. (Phys.-Math), honorary professor of Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus.

Vladimir V. Matveyenka, Candidate (Phys.-Math), associate professor of the Department of Computational Methods and Programming of the Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus.