Infocommunications and Radio Technologies, vol. 2, no. 3, pp. 361–371, 2019. Инфокоммуникационные и радиоэлектронные технологии. 2019. Т. 2, № 3. С. 361—371. ISSN: 2587-9936

УДК 621.391.019

Метод оптимальной передачи двоичных сообщений без межсимвольной интерференции с учетом пространственно-временного кодирования по Аламоути¹

¹ Санников В. Г., ² Волчков В. П. Московский технический университет связи и информатики (МТУСИ) ул. Авиомоторная, 8a, Москва, 111024, Россия ¹ tes_mtuci@mail.ru, ² volchkovvalery@mail.ru

> Получено: 22 июля 2019 г. Отрецензировано: 13 сентября 2019 г. Принято к публикации: 16 сентября 2019 г.

Аннотация: Исследуется система передачи данных с многочастотной модуляцией и оптимальными финитными сигналами, не вызывающих межсимвольной интерференции в канале связи. Для каждого индивидуального канала системы разработана новая структура оптимального когерентного модема. С целью повышения спектральной эффективности системы введена трехэтапная модель ортогонализации канальных сигналов. Для повышения энергетической эффективности системы в канальных модемах реализован метод пространственновременного кодирования по Аламоути. Анализ спектрально-энергетической эффективности системы показывает преимущество новой схемы организации канальных модемов по сравнению с известными современными модемами.

Ключевые слова: система передачи данных, многочастотная модуляция, когерентный модем, оптимальные финитные сигналы без межсимвольной интерференции, спектрально-энергетическая эффективность.

Для цитирования (ГОСТ 7.0.5—2008): Санников В. Г., Волчков В. П. Метод оптимальной передачи двоичных сообщений без межсимвольной интерференции с учетом пространственно-временного кодирования по Аламоути // Инфокоммуникационные и радиоэлектронные технологии. 2019. Т. 2, № 3. С. 361—371.

Для цитирования (ГОСТ 7.0.11—2011): Санников, В. Г. Метод оптимальной передачи двоичных сообщений без межсимвольной интерференции с учетом пространственно-временного кодирования по Аламоути / В. Г. Санников, В. П. Волчков // Инфокоммуникационные и радиоэлектронные технологии. — 2019. — Т. 2, № 3. — С. 361—371.

¹ Статья является расширенной версией доклада, представленного на 29-й Международной Крымской конференции «СВЧ-техника и телекоммуникационные технологии» — КрыМиКо'2019 (Севастополь, РФ, 8—14 сентября 2019 г.).

The method of optimal transmission of binary communication without intersymbolic interference, taking into account space-time coding by Alamouty

V. G. Sannikov¹ and V. P. Volchkov²

Moscow Technical University of Communication and Informatics (MTUSI) 8a, Aviamotornaya Str., Moscow, 111024, Russia ¹tes_mtuci@mail.ru, ²volchkovvalery@mail.ru

> Received: July 22, 2019 Peer-reviewed: September 13, 2019 Accepted: September 16, 2019

Abstract: The system of transmission of data with multi-frequency modulation and optimal finite signals that do not cause inter-symbolic interference in the communication channel is investigated. A new structure of the optimal coherent modem has been developed for each individual channel of the system. In order to improve the spectral efficiency of the system, a three-stage model of orthogonization of canal signals has been introduced. To improve the energy efficiency of the system in channel modems implemented the method of space-time coding on Alamouty. Analysis of the spectral-energy efficiency of the system shows the advantage of the new scheme of organization of channel modems compared to known modern modems.

Keywords: data transmission system, multifrequency modulation, coherent modem, optimal finite signals without inter-symbolic interference, spectral-energy efficiency.

For citation (IEEE): V. G. Sannikov et al. "Method of optimal transmission of binary messages without inter-symbolic interference taking into account space-time coding by Alamouty," *Infocommunications and Radio Technologies*, vol. 2, no. 3, pp. 361–371, 2019. (In Russ.).

1. Введение

Развитие современных систем передачи данных (СПД) предполагает постоянное повышение их эффективности и помехоустойчивости [1]. В условиях частотно-ограниченного канала связи (КС) основными препятствиями повышения эффективности СПД являются шумы КС и межсимвольная интерференция (МСИ) [2, 3]. При этом с увеличением скорости цифровых данных доминирующее влияние на снижение качества связи оказывает МСИ. Поэтому актуальным направлением в решении задачи повышения эффективности и помехоустойчивости СПД является разработка новых оптимальных методов передачи данных без МСИ. SANNIKOV V. G. et al. The method of optimal transmission of binary communication... CAHHUKOB B. Г. и др. Метод оптимальной передачи двоичных сообщений... 363

В цифровых КС для уменьшения МСИ часто применяют методы многочастотной модуляции (МЧМ) с узкополосными поднесущими и спектрально-эффективнми сигналами [4, 5].

Использование узкополосных (полосовых) фильтров (ПФ) позволяет синтезировать в модуляторах СПД оптимальные финитные сигналы (ОФС), принципиально не вызывающие на выходах ПФ МСИ [6, 7]. При этом в демодуляторах вместо сложного приема в целом и эквалайзеров, осуществляется простой поэлементный прием на фильтры (СФ), согласованные с ОФС, обладающих потенциальной помехоустойчивостью [8].

Другим важным направлением развития современных СПД яляется внедрение технологий с несколькими передающими и приемными антеннами [9]. Использование таких технологий необходимо для противодействия деструктивному действию замираний в КС, а также позволяет резко улучшить такие характеристики СПД, как энергетический выигрыш и выигрыш в скорости передачи информации. Эти преимущества реализуются в системах с пространственно-временным кодированием (ПВК) [9].

В работе дан новый метод применения в многочастотном модеме с оптимальными финитными сигналами пространственно-временного кодирования по Аламоути.

2. Объект исследования

Объектом исследования является многоканальная СПД с узкополосными сигналами [8]. В индивидуальных **модуляторах** двоичные данные преобразуются в спектрально-эффективные символы квадратурной амплитудной модуляции (КАМ), которые управляют параметрами канальных гармонических колебаний на частотах $\omega_1, \omega_2, ..., \omega_N$, вырабатываемых формирователем сетки частот; на выходах П Φ_n формируются узкополосные сигналы $s_n(t), n = \overline{1, N}$, а на выходе сумматора групповой сигнал $s(t) = \sum_{n=1}^{N} s_n(t)$. Разделение канальных сигналов в **демодуляторе** выполняется полосовыми фильтрами и когерентными детекторами.

Недостаток данной организации СПД в наличии межканальных искажений (МКИ) и межсимвольной интерференции (МСИ) на выходах ПФ. Для уменьшения МКИ используют ПФ с узкими полосами частот и высокими порядками, а для уменьшения МСИ проводят не всегда эффективный синтез огибающей сигнала s(t) [2, 3].

В данной работе с целью повышения спектрально-энергетической эффективности СПД с МЧМ разработана и анализируется новая структур-

ная схема индивидуального модулятора/демодулятора (модема) с комплексными ОФС, принципиально не вызывающих МСИ на выходах ПФ модема, и пространственно-временным кодированием по Аламоути.

Схема исследуемого модема изображена на рисунке 1.

Здесь введены следующие обозначения: БУД — блок управления длительностью символа, ФОС — формирователь оптимального сигнала, ВМЛ — вычислитель множителей Лагранжа, ГНК — генератор несущего колебания, ФВ — фазовращатель, ПВК — пространственно-временной кодер, СД — синхронный детектор, СВН — схема восстановления несущей, П/П — последовательно-параллельный преобразователь, БОП КС — блок оценки параметров канала связи, ПВД — пространственновременнов временной декодер, СФ — согласованный фильтр, МПРУ — многопороговое решающее устройство.

Рис. 1. Структурная схема индивидуального модема в системе передачи данных с многочастотной модуляцией.

Fig. 1. Structure of individual modem in multi-frequency modulation data transmission system

3. Работа и основные соотношения модулятора

Двоичное сообщение $a(t_k) = a_k$, k = 0, 1, 2, ..., в виде «быстрого» потока импульсов, принимающих на длительности бита T_b значения «0», либо «1», в **демультиплексоре** на длительности символа T_s разбивается на группы по *m* бит и преобразуется в $K = T_s / T_b$ «медленных» $M = 2^m$ -ичных импульсных потоков, с длительностью импульсов $T_m = mT_b$. Затем в моду-

SANNIKOV V. G. et al. The method of optimal transmission of binary communication... CAHHUKOB B. Г. и др. Метод оптимальной передачи двоичных сообщений...

ляторе проводится обработка этих данных с учетом n_0 ортогональных процедур. Первая ортогональная процедура образуется за счет перехода от двух скалярных ортогональных ОФС к одному комплексному ОФС. Вторая реализуется за счет использования двух, не перекрывающихся по времени полуинтервалов, каждый длительностью $T_s/2$. Третья ортогональная процедура получается путем использования двух ортогональных гармонических сигналов: $\sqrt{2} \cos \omega_n t$ и $\sqrt{2} \sin \omega_n t$. На рисунке 1 рассматривается случай, когда $T_s = 2^3 3T_b = 24T_b$ — память демультиплексора.

Перейдем к математическим представлениям сигналов в различных сечениях модулятора. На выходе демультиплексора в моменты кратные T_m формируются амплитуды M-ичных импульсов сигнала МАМ вида

$$\begin{aligned} A_{11} &= (2i_1 - 1 - M)d, \ i_1 = \sum_{\nu=0}^{m-1} \alpha_{i_1,\nu} 2^{\nu}, \quad B_{11} = (2i_2 - 1 - M)d, \ i_2 = \sum_{\nu=0}^{m-1} \alpha_{i_2,\nu} 2^{\nu}, \\ A_{12} &= (2j_1 - 1 - M)d, \ j_1 = \sum_{\nu=0}^{m-1} \alpha_{j_1,\nu} 2^{\nu}, \quad B_{12} = (2j_2 - 1 - M)d, \ j_2 = \sum_{\nu=0}^{m-1} \alpha_{j_2,\nu} 2^{\nu}, \\ A_{21} &= (2k_1 - 1 - M)d, \ k_1 = \sum_{\nu=0}^{m-1} \alpha_{k_1,\nu} 2^{\nu}, \quad B_{21} = (2k_2 - 1 - M)d, \ k_2 = \sum_{\nu=0}^{m-1} \alpha_{k_2,\nu} 2^{\nu}, \\ A_{22} &= (2l_1 - 1 - M)d, \ l_1 = \sum_{\nu=0}^{m-1} \alpha_{l_1,\nu} 2^{\nu}, \quad B_{22} = (2l_2 - 1 - M)d, \ l_2 = \sum_{\nu=0}^{m-1} \alpha_{l_2,\nu} 2^{\nu}. \end{aligned}$$

Здесь $\{\alpha_{\mu,\nu}\}$ — двоичные символы сообщения, 2d — расстояние между сигнальными точками случайных величин в (1) или энергетическая база сигнала МАМ [1].

Далее на выходах умножителей (рис. 1) формируются взвешенные ОФС1 и ОФС2, которые затем суммируются с весом $j = \sqrt{-1}$, образуя комплексные ОФС вида

$$\dot{y}_{1}^{A}(t) = A_{11}y(t) + jA_{12}y_{\perp}(t), \quad \dot{y}_{1}^{B}(t) = B_{11}y(t) + jB_{12}y_{\perp}(t),
\dot{y}_{2}^{A}(t) = A_{21}y(t) + jA_{22}y_{\perp}(t), \quad \dot{y}_{2}^{B}(t) = B_{21}y(t) + jB_{22}y_{\perp}(t).$$
(2)

В (2) y(t) и $y_{\perp}(t)$ — взаимно ортогональные ОФС₁ и ОФС₂. В качестве примера на рисунке 2 приведены формы и спектры ОФС, синтезируемых по критерию максимума отношения сигнал/шум в центре интервала длительностью $T_s = 1.5$ мс, на выходе ПФ Баттерворта 8-го порядка [6].

В блоках пространственно-временного кодирования (ПВК) по правилу Аламоути [9] на основе входных сигналов (2) формируются векторные комплексные сигналы вида

$$\begin{bmatrix} \dot{\mathbf{y}}_{1}^{A}(t) \\ \dot{\mathbf{y}}_{2}^{A}(t) \end{bmatrix} = \begin{bmatrix} \dot{y}_{1}^{A}(t), & -\dot{y}_{2}^{*A}(t) \\ \dot{y}_{2}^{A}(t), & \dot{y}_{1}^{*A}(t) \end{bmatrix}, \begin{bmatrix} \dot{\mathbf{y}}_{1}^{B}(t) \\ \dot{\mathbf{y}}_{2}^{B}(t) \end{bmatrix} = \begin{bmatrix} \dot{y}_{1}^{B}(t), & -\dot{y}_{2}^{*B}(t) \\ \dot{y}_{2}^{B}(t), & \dot{y}_{1}^{*B}(t) \end{bmatrix},$$
(3)

где * — знак комплексного сопряжения.

Рис. 2. Формы и спектры оптимальных финитных сигналов первого и второго вида. Fig. 2. Forms and specs of optimal finite signals of the first and second kind

Эти ОФС представляют собой низкочастотные сигналы, согласованные с характеристиками низкочастотного эквивалента ПФ Баттерворта. Для передачи их по высокочастотному КС требуется осуществить модуляцию ортогональных гармонических переносчиков. Эта процедура на рис.1 реализуется посредством умножителей. В результате на двух пространственных выходах модулятора формируются сигналы по правилу

$$\begin{bmatrix} \dot{\mathbf{s}}_{1}(t) \\ \dot{\mathbf{s}}_{2}(t) \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{y}}_{1}^{A}(t)\sqrt{2}\cos\omega_{n}t + \dot{\mathbf{y}}_{1}^{B}(t)\sqrt{2}\sin\omega_{n}t \\ \dot{\mathbf{y}}_{2}^{A}(t)\sqrt{2}\cos\omega_{n}t + \dot{\mathbf{y}}_{2}^{B}(t)\sqrt{2}\sin\omega_{n}t \end{bmatrix}.$$
(4)

4. Работа и основные соотношения демодулятора

На вход демодулятора воздействует комплексный сигнал $\dot{\mathbf{z}}(t)$ вида

$$\dot{\mathbf{z}}(t) = \dot{H}_{1}(t)\dot{\mathbf{s}}_{1}(t) + \dot{H}_{2}(t)\dot{\mathbf{s}}_{2}(t) + \dot{\boldsymbol{\xi}}(t)$$
(5)

Здесь $\dot{H}_1(t)$ и $\dot{H}_2(t)$ — комплексные замирания в высокочастотном КС, огибающие которых \dot{h}_i , i = 1, 2, полагаем постоянными на последователь-

SANNIKOV V. G. et al. The method of optimal transmission of binary communication... CAHHUKOB B. Г. и др. Метод оптимальной передачи двоичных сообщений...

ных символьных полуинтервалов, $\dot{\xi}(t)$ — векторный, комплексный, гауссовский шум наблюдения с некоррелированными значениями.

Прием сигналов в когерентном демодуляторе осуществляется на синхронные детекторы (СД) [8]. Полагаем, что используется идеальная синхронизация на основе оценок параметров канала связи.

Вначале рассмотрим работу демодулятора без учета шума наблюдения. Для восстановления передаваемых низкочастотных ОФС в СД проводится интегрирование соотношений в (5). Затем на основе ортогональных гармонических колебаний в синфазном и квадратурном каналах демодулятора, с учетом обнуления составляющих на удвоенных частотах, формируются комплексные вектор-функции наблюдаемых сигналов вида

$$\dot{\mathbf{z}}_{c}(t) = \sqrt{2} \int [\dot{H}_{1}\dot{\mathbf{s}}_{1}(t) + \dot{H}_{2}\dot{\mathbf{s}}_{2}(t)]\cos(\omega_{n}t)dt = \dot{h}_{1}\dot{\mathbf{y}}_{1}^{A}(t) + \dot{h}_{2}\dot{\mathbf{y}}_{2}^{A}(t) = [\dot{z}_{c,1}(t), \dot{z}_{c,2}(t)],$$
(6)

$$\dot{\mathbf{z}}_{s}(t) = \sqrt{2} \int [\dot{H}_{1}\dot{\mathbf{s}}_{1}(t) + \dot{H}_{2}\dot{\mathbf{s}}_{2}(t)]\sin(\omega_{n}t)dt = \dot{h}_{1}\dot{\mathbf{y}}_{1}^{B}(t) + \dot{h}_{2}\dot{\mathbf{y}}_{2}^{B}(t) = [\dot{z}_{s,1}(t), \dot{z}_{s,2}(t)].$$

В результате перехода от последовательного к параллельному представлению в синфазном и квадратурном каналах получаем

$$\begin{bmatrix} \dot{z}_{c,1}(t) \\ \dot{z}_{c,2}(t) \end{bmatrix} = \begin{bmatrix} \dot{h}_1 & \dot{h}_2 \\ \dot{h}_2^* & -\dot{h}_1^* \end{bmatrix} \cdot \begin{bmatrix} \dot{y}_1^A(t) \\ \dot{y}_2^A(t) \end{bmatrix} = \dot{\mathbf{H}} \cdot \dot{\mathbf{y}}^A(t), \begin{bmatrix} \dot{z}_{s,1}(t) \\ \dot{z}_{s,2}(t) \end{bmatrix} = \begin{bmatrix} \dot{h}_1 & \dot{h}_2 \\ \dot{h}_2^* & -\dot{h}_1^* \end{bmatrix} \cdot \begin{bmatrix} \dot{y}_1^B(t) \\ \dot{y}_2^B(t) \end{bmatrix} = \dot{\mathbf{H}} \cdot \dot{\mathbf{y}}^B(t).$$
(7)

Квадратная комплексная матрица **H** огибающих замираний в (7) составлена из низкочастотных эквивалентов матрицы КС; она ортогональна, что подтверждается следующими вычислениями

$$\dot{\mathbf{H}}^{H}\dot{\mathbf{H}} = \begin{bmatrix} \dot{h}_{1}^{*} & \dot{h}_{2} \\ \dot{h}_{2}^{*} & -\dot{h}_{1} \end{bmatrix} \cdot \begin{bmatrix} \dot{h}_{1} & \dot{h}_{2} \\ \dot{h}_{2}^{*} & -\dot{h}_{1}^{*} \end{bmatrix} = (h_{1}^{2} + h_{2}^{2})\mathbf{1}_{2\times 2}, \qquad (8)$$

где H — знак сопряжения по Эрмиту, $\mathbf{1}_{2\times 2}$ — единичная матрица.

Соотношения (7) и (8) являются основой пространственновременного декодирования в блоках (ПВД). Действительно, умножая правые и левые части равенств в (7) на сопряженные по Эрмиту матрицы КС, на выходах блоков ПВД восстанавливаются комплексные ОФС вида

$$\dot{y}_{1}^{A}(t) = \frac{\dot{h}_{1}^{*}\dot{z}_{c,1}(t) + \dot{h}_{2}\dot{z}_{c,2}(t)}{(h_{1}^{2} + h_{2}^{2})}, \quad \dot{y}_{1}^{B}(t) = \frac{\dot{h}_{1}^{*}\dot{z}_{s,1}(t) + \dot{h}_{2}\dot{z}_{s,2}(t)}{(h_{1}^{2} + h_{2}^{2})},$$

$$\dot{y}_{2}^{A}(t) = \frac{\dot{h}_{2}^{*}\dot{z}_{c,1}(t) - \dot{h}_{1}\dot{z}_{c,2}(t)}{(h_{1}^{2} + h_{2}^{2})}, \quad \dot{y}_{2}^{B}(t) = \frac{\dot{h}_{2}^{*}\dot{z}_{s,1}(t) - \dot{h}_{1}\dot{z}_{s,2}(t)}{(h_{1}^{2} + h_{2}^{2})}.$$
(9)

Теперь для выделения из комплексных ОФС $\dot{y}_1^A(t), \dot{y}_2^A(t)$ и $\dot{y}_1^B(t), \dot{y}_2^B(t)$ их реальные и мнимые составляющие в схеме на рис. 1 введены блоки последовательно-параллельного преобразования П/П, на вы-

ходах которых формируются сигналы: Re $\dot{y}_1^A(t)$, Im $\dot{y}_1^A(t)$, Re $\dot{y}_2^A(t)$, Im $\dot{y}_2^A(t)$, Re $\dot{y}_1^B(t)$, Im $\dot{y}_1^B(t)$, Re $\dot{y}_2^B(t)$, Im $\dot{y}_2^B(t)$. Пропуская эти сигналы через соответствующие согласованные фильтры C Φ_1 и C Φ_2 , в моменты максимума на их выходах восстанавливаются передаваемые символы сигналов МАМ в (1): $A_{11}, A_{12}, A_{21}, A_{22}$ и $B_{11}, B_{12}, B_{21}, B_{22}$. После их двоичного кодирования восстанавливаются { $\alpha_{\mu,\nu}$ } — двоичные символы в (1), которые заполняют память мультиплексора. После последовательного опроса мультиплексора на его выходе формируется передаваемое двоичное сообщение $a(t_k) = a_k, k = 0, 1, 2, \dots$.

5. Прием сигналов с учетом шумов наблюдения

Соотношения для откликов синфазного и квадратурного СД при наличии шумов наблюдения записываются так $[\dot{z}_{c,1}^{\circ}(t), \dot{z}_{c,2}^{\circ}(t)] = [\dot{z}_{c,1}(t) + \dot{\xi}_{c,1}, \dot{z}_{c,2}(t) + \dot{\xi}_{c,2}], [\dot{z}_{s,1}^{\circ}(t), \dot{z}_{s,2}^{\circ}(t)] = [\dot{z}_{s,1}(t) + \dot{\xi}_{s,2}(t) + \dot{\xi}_{s,2}], (10)$ где $\dot{\xi}_{c,i}, i = 1, 2$ — низкочастотные эквиваленты шумов наблюдения в синфазном канале, $\dot{\xi}_{s,i}, i = 1, 2$ — шумы наблюдения в квадратурном канале.

С учетом (10) и на основе соотношений (7)÷(9) находим **оценки** комплексных оптимальных финитных сигналов (ОФС)

$$\dot{y}_{1}^{A\circ}(t) = \dot{y}_{1}^{A}(t) + \frac{\dot{h}_{1}^{*}\dot{\xi}_{c,1}(t) + \dot{h}_{2}\dot{\xi}_{c,2}(t)}{(h_{1}^{2} + h_{2}^{2})}, \quad \dot{y}_{1}^{B\circ}(t) = \dot{y}_{1}^{B}(t) + \frac{\dot{h}_{1}^{*}\dot{\xi}_{s,1}(t) + \dot{h}_{2}\dot{\xi}_{s,2}(t)}{(h_{1}^{2} + h_{2}^{2})},$$

$$\dot{y}_{2}^{A\circ}(t) = \dot{y}_{2}^{A}(t) + \frac{\dot{h}_{2}^{*}\dot{\xi}_{c,1}(t) - \dot{h}_{1}\dot{\xi}_{c,2}(t)}{(h_{1}^{2} + h_{2}^{2})}, \quad \dot{y}_{2}^{B\circ}(t) = \dot{y}_{2}^{B}(t) + \frac{\dot{h}_{2}^{*}\dot{\xi}_{s,1}(t) - \dot{h}_{1}\dot{\xi}_{s,2}(t)}{(h_{1}^{2} + h_{2}^{2})}.$$
(11)

Из (11) следует, что при наличии шумов наблюдения к точным копиям ОФС добавляются случайные погрешности $\dot{\xi}_i^A, \dot{\xi}_i^B, i = \overline{1,2}$ (вторые компоненты в (11)). Полагая, что они взаимно некоррелированы, а соответствующие им средние мощности одинаковы: $P_{\xi_{c1}} = P_{\xi_{c2}} = P_{\xi_{s1}} = P_{\xi_{s2}}$, нетрудно показать, что средние мощности погрешностей оценок также одинаковы: $P_{\xi^A} = P_{\xi^B} = P^\circ$ и соответственно равны

$$P^{\circ} = \mathbf{M}\dot{\xi}_{i}^{A}\dot{\xi}_{i}^{*A} = \mathbf{M}\dot{\xi}_{i}^{B}\dot{\xi}_{i}^{*B} = P_{\xi}/(h_{1}^{2}+h_{2}^{2}).$$
(12)

Следовательно, отношение мощности ОФС P_y (заметим, что мощности ОФС₁ и ОФС₂ одинаковы) к мощности погрешности оценки P° (ОСШ) на входе согласованных фильтров (СФ) демодулятора равно

$$\rho^{\circ} = P_{y} / P^{\circ} = (h_{1}^{2} + h_{2}^{2})P_{y} / P_{\xi} = (h_{1}^{2} + h_{2}^{2})\rho_{\xi} .$$
(13)

На основе (13) введем понятие выигрыша по ОСШ от пространственно-временной обработки по Аламоути

$$k_{\rho} = \frac{\rho^{\circ}}{\rho_{\xi}} = (h_1^2 + h_2^2).$$
(14)

6. Спектрально-энергетическая эффективность СПД с МЧМ

При анализе работы СПД учитываются два показателя [1]: показатель спектральной эффективности $\eta_F = V_b / F_{KS}$ (бит/с/Гц), и показатель энергетической эффективности $\eta_E = E_b / G_0$, где $V_b = 1/T_b$ — битовая скорость, F_{KS} — полоса частот канала связи, — энергия, приходящаяся на бит данных, G_0 — односторонняя спектральная плотность мощности аддитивного бегого гауссовского шума (АБГШ) в КС.

Для СПД с МЧМ и новым модемом (рис.1) показатель спектральной эффективности равен

$$\eta_F = 2^{n_0 - 1} \frac{\alpha \cdot c_{\gamma, 1}}{\delta_p} \log_2 M_{KAM} , \qquad (15)$$

где $\alpha = 1.428$ — параметр увеличения битовой скорости в КС за счет передачи только эффективной части ОФС (рис.2), $c_{\gamma,1} = 0.387$, $F_p = \delta_p F_{\gamma}$, F_{γ} полоса ФБ поуровню 3 дБ, F_p — полоса ФБ поуровню L_p дБ, $\delta_p = [10^{-0.1L_p} - 1]^{1/2p}$, p — порядок ФБ.

Энергетическая эффективность разработанного модема оценивается при фиксированной допустимой вероятности битовой ошибки, равной $p_{dop} = 10^{-4}$ и определяется в соответствии с [7]. На основе этой работы с учетом (14) получаем следующее соотношение для показателя энергетической эффективности СПД с МЧМ

$$\eta_{E} = \left[erfcinv \left(\frac{1 - \sqrt{1 - 2p_{dop} \log_2 M_{KAM}}}{1 - 1/\sqrt{M_{KAM}}} \right) \right]^2 \frac{2(M_{KAM} - 1)}{3(\log_2 M_{KAM})k_{E}(V)k_{\rho}},$$
(16)

где *erfcinv*(•) — функция, обратная функции ошибки, $M_{KAM} = M^2$, $k_E(V)$ — коэффициент передачи по энергии для ОФС [6].

Сравнительные результаты расчетов спектрально-энергетической эффективности, разработанного модема МЧМ-ОФС, а также стандартизированных модемов: модема с OFDM [5, 9] и модема V34 (Рекомендация ITU-T, 1994 [5]), даны в таблице 1 и получены при следующих параметрах в (15) и (16): p = 8, $n_0 = 3$, $L_p = 20 \text{ дБ}$, $k_E(V) = 15/16$, $k_\rho = 2$ (при $h_1^2 = h_2^2 = 1$).

Модем	Спектральная эффективность (бит/с·Гц)	Энергетическая эффективность (дБ)
МЧМ-ОФС	$\eta_{F,DMT} = 2.0482$	$\eta_{E,DMT} = 5.57$
OFDM	$\eta_{F,OFDM}=1$	$\eta_{E,OFDM} = 8.39$
V34	$\eta_{F,V34} = 0.8$	$\eta_{E,V34} = 9$

Таб. 1. Данные эффективности сравниваемых модемов при $M_{KAM} = 2^2$. Tab. 1. Data on the effectiveness of comparable modems at $M_{KAM} = 2^2$

7. Заключение

1. Впервые предложен алгоритм и разработана на его основе функциональная схема нового модулятора/демодулятора в цифровой системе многочастотной передачи данных с повышенной энергетической эффективностью на основе пространственно-временной передачи и приема оптимальных финитных сигналов, не вызывающих межсимвольной интерференции на выходах узкополосных канальных фильтров.

2. Проведен теоретический анализ спектрально-энергетической эффективности нового модема. В частности, показано, что в достаточно сложных условиях приема, при $M_{KAM} = 2 \times 2$ данный модем по сравнению со стандартным модемом V34, обеспечивает выигрыш по энергетической эффективности на 3.4 дБ. Кроме того, разработанный модем с узкополосными поднесущими энергетически эффективнее на 2.82 дБ по сравнению с модемом OFDM и широкополосными поднесущими.

3. Реализация нового модема в цифровых телекоммуникационных системах позволит значительно повысить их спектрально-энергетическую эффективность. Предложенный подход может быть использован в новых технологиях для организации высокоскоростной передачи данных по частотно-ограниченным каналам связи.

Список литературы

- Помехоустойчивость и эффективность систем передачи информации / А. Г. Зюко, А. И. Фалько, И. П. Панфилов, В. Л. Банкет, П. В. Иващенко. Под ред. А. Г. Зюко. М. : Радио и связь, 1985. 272 с.
- Morelli M., Mengali U. Carrier-Frequency Estimation for Transmissions over Selective Channels // IEEE Transactions on Communications, September 2000. Vol. 48, No. 9. Pp. 1580–1589.
- Wang X. and Poor V. H. Wireless Communication Systems. Advanced Techniques for Signal Reception. Prentice-Hall. : Upper Saddle River, NJ, 2004. 400 pp.
- 4. Балашов В. А., Воробиенко П. П., Ляховецкий Л. М. Системы передачи ортогональными гармоническими сигналами. М. : ЭКО-ТРЕНДЗ, 2012. 228 с.

SANNIKOV V. G. et al. The method of optimal transmission of binary communication... 371 САННИКОВ В. Г. и др. Метод оптимальной передачи двоичных сообщений...

- 5. Лагутенко О. И. Современные модемы. М. : ЭКО-ТРЕНДЗ, 2002. 343 с.
- 6. Санников В. Г. Синтез финитных сигналов Найквиста, согласованных с телефонным каналом связи // Электросвязь. 2012. № 5. С. 9—12.
- 7. Санников В. Г. Помехоустойчивость системы передачи оптимальных финитных сигналов по телефонному каналу связи // Электросвязь. 2013. № 5. С. 39 44.
- Аджемов А. С., Санников В. Г. Общая теория связи. Учебник для вузов. М. : Горячая линия-Телеком, 2018. 624 с.
- Шлома А. М., Бакулин М. Г., Крейнделин В. Б., Шумов А. П. Новые технологии в системах мобильной радиосвязи / Под ред. А. М. Шломы. М. : МТУСИ, 2005. 455 с.

Информация об авторах

Санников Владимир Григорьевич, профессор Московского технического университета связи и информатики, г. Москва, Российская Федерация.

Волчков Валерий Павлович, профессор Московского технического университета связи и информатики, г. Москва, Российская Федерация.

Information about the authors

Vladimir G. Sannikov, professor of the Moscow Technical University of Communications and Informatics, Moscow, Russian Federation.

Valeriy P. Volchkov, professor of the Moscow Technical University of Communications and Informatics, Moscow, Russian Federation.