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Аннотация: Предложены стационарная и нестационарная модели расчета 

туннельного тока вакуумного резонансно-туннельного триода с управляющей 

сеткой. Стационарная модель основана на решении стационарного уравнения 

Шрёдингера матричным методом и методом множественных изображений с 

расчетом профиля потенциала в конструкции, имеющей несколько электродов. 
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1. Introduction 

The vacuum tunnel triodes are very interesting objects of research for 

vacuum microelectronics, since they do not require incandescence for operation, 

and the emission structure can be very compact and at the same time create very 

large currents necessary for the operation of devices. Such resonant tunnel tran-

sistors (RTTs) can be used as emission sources with a high current density. For 

this purpose, triodes with a double grid and a grid in the form of several con-

ducting layers separated by vacuum gaps are interesting. Such grids are able to 

create a multi-humped quasi-periodic potential barrier that can be transparent in 

a certain energy band. In addition to resonant tunnel diodes (RTDs), the multi-

barrier (multi-hump) resonant tunnel heterostructures also are used in nanoelec-
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tronics, for example, in quantum cascade lasers. In contrast, vacuum RTTs in 

the form of heterostructures are convenient for current control. In this paper, for 

these purposes, the vacuum RTT is studied under stationary consideration. The 

stationary Schrodinger equation (SE) is solved and the VAC is calculated.  

According to the Fowler–Nordheim formula, field or autoelectronic emis-

sion (AE) is theoretically capable of providing gigantic current densities of the 

order of J~1015 A/m2 or more (depending on the concentration of free electrons 

in the cathode), but under the action of very strong fields [1, 2]. At such fields, 

the potential barrier practically disappears, and almost all the electrons tunnel 

that run into the cathode surface. However, very strong fields lead to a number 

of negative effects, such as reverse bombardment of the cathode, heating of the 

cathode, explosive emission, ponderomotor forces. Therefore, a promising di-

rection is to increase the current density at not too strong fields. This is possible 

with resonant tunneling. Another effect that increases the current is associated 

with the penetration of the field deep into the cathode and with a change in the 

shape and thickness of the barrier in the cathode region. This can be achieved 

by making a thin dielectric or semiconductor film with a thickness of several 

nanometers on the cathode surface, or by making a cathode with a porous car-

bon structure from various allotropic carbon modifications [3-9]. As the latter, 

carbon nanoclusters made of diamond and graphite phases are convenient [3-9]. 

The field penetrates into the considered structures with a weakening, as a result 

of which the barrier thickness decreases by an order of magnitude of the film 

thickness. Its height is also slightly reduced. These are dimensional effects. The 

penetration of the field into the cathode to a depth of several nm leads to an ac-

celeration of the electrons incident on its surface, an increase in their energy and 

better tunneling. In addition, when using clusters with dielectric and metallic 

(semiconductor) phases, Tamm levels appear on their surfaces, which promote 

tunneling. Their presence manifests itself as a hysteresis when the applied volt-

age changes over time [8]. 

Resonant tunnel structures based on semiconductors are performed by 

doping. The semiconductor resonant-tunnel transistor (RTT) and RTD can form 

a double-humped potential barrier and a VAC with incident sections, and are 

widely used as amplifiers and generators of the THz range. For vacuum RTT, it 

is necessary to isolate the grid from the cathode with a vacuum gap. If such a 

grid is in contact with the cathode, Fig. 1, then another insulated grid is re-

quired. If both meshes are isolated and are under certain potentials, such a struc-

ture can be considered as a tetrode. If one of the grids is grounded (contacts the 

cathode), or two grids are connected, then it is a triode. Two additional elec-

trodes to the cathode and anode make it possible to create a three-humped po-
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tential barrier with local levels between the humps, providing resonant tunnel-

ing Fig. 2. A barrier of several identical humps allows you to get how close the 

energy levels are, which leads to a transparency band, thereby increasing the 

integral current. Since the area of the usual barrier for metals is on the order of a 

few nanometers, the grid electrodes must have the same length, i.e. be transpar-

ent to electrons. The structures of carbon nanotube (CNT) and n-layer graphene 

sheets are very strong and meet all the requirements. It is convenient to use a 

grid of CNTs with a metallic type of conductivity, arranged collinearly in the 

plane, or to build grids of CNTs of the woodpile type. In the construction of 

grids, their fasteners are required fig. 1. In a triode structure with two grids, the 

first grid can be attached directly to the cathode, providing contact and the de-

sired cathode potential on it. The second grid should be isolated and the speci-

fied voltage gU  applied to it. In this case, a three-humped potential barrier is 

formed. By placing several grids at the cathode potential, a quasi-periodic barri-

er can be formed. However, the “lowered” barrier is more promising, when sev-

eral grids have the same pulling potential Fig. 2. Such a barrier can be transpar-

ent for some energies, Fig. 3, whereas for a two-hump barrier with a single grid, 

incomplete resonant tunneling usually occurs [8]. It is also convenient to con-

sider the possibility of controlling the voltage of two grids at once, i.e., consider 

the tetrode and enter the potentials gU1  and gU2 . 

2. Calculating the current density for an arbitrary barrier 

Let the barrier be described by an arbitrary potential function  xV . This 

function has a value   00 eUV   equal to the energy of the electrons at the bottom 

of the conduction band of the cathode. At the anode    aUUedV  0  is the en-

ergy of the electron at the bottom of the conduction band of the anode. The pro-

file  xV  has all negative values, while the free electron in a vacuum corresponds 

to zero kinetic energy. We also introduce the electron energy in the regions of 

two grids:    01 VxV g   at 111 sxxx gg   and    gg UUexV  02  at 

222 sxxx gg  . In the intervals between the electrodes, the function changes 

continuously, but for the numerical solution of the SE, we divide these intervals 

by discrete points and use a stepwise representation of the potential function 

   



N

j

jj xuVxV
1

.                                            (1) 
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It is convenient to use unequal intervals to determine the unit step func-

tions   1xu j  at jj xxx 1 , where jV  are the values of the potentials at the 

central points   2/1 jjj xxx    of the steps defining the barrier. Namely, each 

grid electrode is described by a single step function. Each function corresponds 

to a transfer matrix 

   
    



















jjjjj

jjjjj

j
xkxkik

xkikxk
T

cossin

sincos
ˆ

1

,                             (2) 

in which   /2 jej VEmk   for the above-barrier areas and 

  /2 EVmik jej   for the sub-barrier areas. Here em  is the mass of the elec-

tron. Next, it is convenient to enter the designation 
em2 . The program for 

solving SE consists in constructing a complete matrix 
NTTTT ˆ...ˆˆˆ

21  by multiply-

ing the matrices of the regions and calculating the transmission coefficient from 

a system of equations  TkiTTR /1 1211 ,  TkiTTikR /1 22210  . Adding them 

together, we get the result     kTTkikkTTT ///2 1221002211  ,  TkiTTkR /1 22210 

. Since we have        2202101211 /1/1 TkkTikiTkTRRZ  , we can find the reflection 

coefficient from the barrier in another way:    1/1  ZZR . The calculated 

barrier transparency (tunneling) coefficient   2
TED   depends on the kinetic 

energy E of the electron in the cathode region. The notations /0 Ek   and 

  /aeUEk    are used above, i.e. the values and are proportional to the elec-

tron pulses at the cathode and anode. The momentum of the electrons at the an-
ode increases due to acceleration during the above-barrier movement. The inci-

dent flow of particles is determined by function  xik0exp , and the past flow is 

determined by function  xik0exp . Naturally, the hit of an electron on the anode 

leads to the relaxation of the additional pulse at about the free path length and to 
the heating of the anode. Usually, the electron energy is counted from the bot-
tom of the conduction band, so the maximum kinetic energy (at zero tempera-
ture) is equal to the Fermi energy 

FE . In this case, the depth of the cathode con-

duction band 
00 WEeUV Fс  , and W0 is the electron output work. Such bar-

riers are constructed in Fig. 2. If the energy of the free electron is taken as the 
zero of the energy reference, then all the values of the energies and potentials 
will be negative. It is convenient to take the energy at the bottom of the conduc-
tion band of the anode as zero. Then the bottom of the conduction band of the 

cathode has a positive value aeU , the maximum energy of the electron takes a 
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value Fa EeU  , and all values jV  become positive and are counted from the 

“zero” potential of the anode. Such a potential profile is conveniently described 
by a sequence of rectangular steps. In all matrix elements there are differences 
that do not change due to a change in the reference frame. Either k0 and k do not 
change. To calculate the current, we take into account study the electron energy 

distribution from the bottom of the conduction band to FE , as well as the num-

ber of electrons incident with the corresponding normal component of the pulse 
on the barrier [2, 10]. Given this, the result for the current density at the cathode 
temperature T can be written as 

    vdvvv
Tk

m
ED

Tkem
J F

B

eBe
e 





























0

22

32

2

2
exp1ln

4 
,

 

and at zero temperature as  

  

  dEEEED
em

J
FE

F
e

e   

0

324 
.                                  (3)

 

At a low temperature, the expression (3) can be converted to the form 

  

  dEETkEED
em

J

TkE

BF
e

e

BF




 
0

324 
.                             (4)

 

3. Determining the barrier profile 

The barrier profile is constructed by the method of multiple images [4–

10], taking into account the fact that at a small distance  from the conducting 

electrode and in the small region g around the dielectric boundary, the image 

forces do not act. These dimensions of the order of Å can be associated with the 

work of the metal and dielectric exit [5–9]. The image method is suitable for 

barriers between two electrodes, taking into account the dielectric layers on 

their surfaces, i.e. images are used relative to several surfaces [4–9]. In the pres-

ence of a dielectric film on the cathode, there are three such surfaces, and, ac-

cordingly, the number of images is triple. For images relative to the surface of 

the dielectric, for the effective charge /eq   inside the dielectric, take the 

charge /eq   of the image relative to the surface of the metal and 

     2/1e  relative to the surface of the dielectric. For an electron –e in a 

vacuum, the image relative to the surface of the dielectric is given by the charge 

   1/1  e . The image method immediately shows that the work on moving 

the charge in the film is about a factor  less than the similar work without the 
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film (in a vacuum). The results of barrier modeling for structures with a film are 

given in [4–6]. The work on the transfer of a electron between the infinite plates 

of a flat capacitor with a size formed by the cathode and the first grid is deter-

mined by the potential function  1,,, gxW g  [8-10]. It is 

      































 



2
2

1

23

1

2

111

1

0

2

/

1222
1

1

16 ng ngxng

x

gxgxg

xg

x

e
W


.                       (5)

  

4. Emission control 

Fig. 2 shows the profiles of a number of barriers, and Fig. 3 shows the cal-

culations of the tunneling coefficient for the Fermi energy. For simple barriers, 

formula (9) and similar ones show that the maximum current is obtained for a 

cathode with a large concentration of electrons (Fermi energy) and a large trans-

parency. Transparency can be adjusted by creating complex barriers. A large con-

centration of electrons is important for obtaining emission structures that can give 

off a large current density in extremely strong fields. All other things being equal, 

the emission current in the RTT depends on the grid potential. In fig. 3 shows the 

results of calculating the tunneling coefficient  FED  from the grid voltage Ug. 

However, the maximum for resonance tunneling can be at lower energies, so it is 

important to calculate the total current density taking into account the energy dis-

tribution. This calculation is shown in Fig. 4 using formula (3). In this case, the 

integral was calculated numerically from 100 points of the quadrature formula of 

the averages, which required the calculation of 100 values  nED . 
U Ug a

0 g g d1 2

1

2

3

5

4

x 
Fig. 1. Configuration in the form of a flat cathode 1, two grids 2, 3 of thickness s and  

a flat anode 4. The grid 2 contacts the cathode, 5 – dielectric fasteners of the insulated grid. 

Рис. 1. Конфигурация в виде плоского катода 1, двух сеток 2, 3 толщиной s и плоского анода 4. 

Сетка 2 контактирует с катодом, 5 – диэлектрические крепления изолированной сетки 
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Fig. 2. Profiles of complex barriers in structures with two grids under the same potential (B):  

Vg = 0 (curve 1); 2 (2); 4 (3); 5 (4); 8 (5); 9 (6); 11 (7); 15 (8). Va = 11 eV, d1=d2=d3=2, s1=s2=1, 

 = 0.1, g = 0.15 (dimensions in nm). For curves 1–7 Va = 11 eV, for curve 8 Va = 5 eV. 
 

Рис. 2. Профили сложных барьеров в структурах с двумя сетками при одном потенциале (B): 

Vg = 0 (кривая 1); 2 (2); 4 (3); 5 (4); 8 (5); 9 (6); 11 (7); 15 (8). Va = 11 эВ, d1 = d2 = d3 = 2, s1=s2=1,  

 = 0,1, g = 0,15 (размеры в нм). Для кривых 1—7 Va = 11 эВ, для кривой 8 Va = 5 эВ 
 

 

 
Fig. 3. The tunneling coefficient for the structure d1 = d2 = d3 = 2, s1 = s2 = 1,  = 0.1, g=0.15 (nm) 

depending on the grid potential Vg (eV). Va = 11 (eV). 
 

Рис. 3. Коэффициент туннелирования для структуры d1 = d2 = d3 = 2, s1 = s2 = 1,  = 0.1, 

g=0.15 (нм) в зависимости от потенциала сетки Vg (эВ). Va = 11 (эВ) 
 

Although tunneling is usually described by a single-particle SE, in the 

sense there are particles falling on the barrier      ExExEN ,, *   with a density 
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in the flow at 0x , where the incident flow is described by a wave function 

     xikEaEx 0exp,  , and the reflected flow is described by a function 

   xikRaEx 0exp,  . Here also /0 Ek  . The flow that passed into the 

anode is described by the function  ikxTa exp . The probability flows them-

selves have an expression             txtxtxtximtxj xxe ,,,,2, **1
 

 . Due to the 

fact that the flow has an energy distribution, its wave function should be con-

sidered as a wave packet, represented as an energy integral. Formally, it is pos-

sible to construct static anode VAC and grid VAC and solve a non-stationary 

problem, considering the RTT in the circuit or as a concentrated element of a 

certain circuit. This problem for RTD is solved in [11]. The non-stationary dy-

namic problem is set as follows: until the moment t = 0 of tunneling, the tunnel-

ing is stationary, while the grid potential is constant (i.e., the barrier profile does 

not change), and the function  xV  is determined as indicated above. If the flux 

density    dEEEmjdE Fe 
1322   is high, the barrier profile may be affected 

by the electron density in the barrier region      ExExeEx ,,, *  , which 

should be determined from the solution of the one-dimensional Poisson equa-

tion (PE). If is the profile  xV  obtained for a single electron, then the profile 

obtained taking into account the charge density will be denoted  xV
~

. The func-

tion can be determined based on the matrix approach given above, as well as by 

directly solving the SE       xExVxx   22  . You can search for a similar 

solution in the barrier area in the form 

           














1

sin//11,
n

n
d

xn
adxETdxEREaEx




                        
(8)

 

Substituting it in the SE, we get the equation for the coefficients 
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Fig. 4. Voltage-grid characteristics for the structure of Fig. 2 at different grid potential Va:  

11 eV (curve 1); 15 eV (2); 5 eV (3). 
 

Рис. 4. Вольт-сеточные характеристики для структуры рис. 2 при различных потенциалах 
сетки Va: 11 эВ (кривая 1); 15 эВ (2); 5 эВ (3) 

 

The wave function is continuous (”cross-linked") with the corresponding 
function outside the domain. However, you must also stitch the derivatives: 
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n

n

n

0

1

111  




 .
 

These are additional conditions on the expansion coefficients. The given 
relations and the representation of the total wave function in the form of a spec-
tral integral allow us to define the total fluxes of the probability density 

            txtxtxtxitxj xx ,,,,, **1
 

 . The input stream  tj ,0  is sta-

tionary. 
Let the grid voltage  tU g  begin to change at the moment t=0. Generally 

speaking, this leads to a change in the entire profile  txV , , and the wave func-

tion must satisfy the non-stationary SE. The nonstationary SE solution should 
be consistent with the boundary conditions at the cathode. Inside the cathode, 
the electrons are free, and the wave function is a wave packet 

            dEiEtxikERxikEatx
FE

 
0

00 /expexpexp,  .
 

Calculating the probability flow, we have 

         
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For incoming electrons      0

4222 2/ kEEmEa Fe  . The input current is 

stationary and is equal to    0,0,0 ejtejJ  . We define a function 

     xUexVxV
~~

  where the potential  xU
~

 satisfies the PE     0

2 /
~

 xxUx   

with zero boundary conditions at the cathode and anode. We are looking for the 

specified solution in the form 

   





1

/sin
~

n

n dxnuxU  ,
 

where do we get the expansion coefficients from 

  









d

n dx
d

xn
x

n

ed
u

0

2

22

0

sin
2 




.
 

In the non-stationary case time-dependent wave function  tx,  and po-

tentials  txV , ,  txV ,
~

 and  txU ,
~

 should be used. We assume that at the mo-

ment t = 0 the initial conditions of the type    xx  0, ,    xVxV 0, , etc. are 

satisfied. For each moment of time, it is necessary to jointly solve the SE with 

the function  txV ,
~

 and the PE with the charge density  2
,txe . It is con-

venient to assume that    tUUtU ggg  0
 at 0t  and    xVtxV ,  off the 

grid, for example,     tkUtU gg 00 sin1  . Then      tUexVtxV g, . A 

change in the potential function in a small region leads to a change in the wave 

function in the entire region:      txxtx ,,   . Substituting this function 

in the SE with replacement  xV  by  xV
~

 and taking into account the stationary 

SE, which satisfies  x , we obtain  

         txtUetxxVtxi g
x

t ,,
~

,
22




 













 ,                   (10)
 

As a result of solving SE in the first approximation, we have (see [11]) 
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(11)
 

Here  2/20 sg  ,  dd    are the phases of wave function. 

 

5. Conclusions 

Stationary and non-stationary RTT models are proposed in this paper. To 

create a potential barrier profile with several maxima, including quasi-periodic 

profiles, it is proposed to use additional grid electrodes. Part of the grid elec-
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trodes can be located at the cathode potential. Then the introduction of the con-

trol electrode implements RTT. The complex profile of the barrier in the work is 

determined by the method of multiple images. The matrix method is used to 

solve the SE, and the series method is proposed, which allows us to solve both 

the SE and the PE together. It is shown that there is a grid potential at which the 

barrier is transparent, and that there is a falling section of the grid characteristic. 

A non-stationary RTT model is proposed, which allows calculating the dynamic 

current-voltage characteristics. In this case, a linear approximation and a non-

linear equation of the current-voltage dependence on the label are obtained. 
Fig. 3 and 4 show that the grid current-voltage characteristics when per-

forming resonant tunneling (at a high voltage on the grid) are weakly dependent 
on the anode voltage. Performing the anode in the form of a grid in this mode 
and using an accelerating electrode behind it, it is possible to obtain a high-
current electron beam of high density, which is orders of magnitude higher than 
the usually achievable densities for planar cathodes with coatings of diamond-
graphite clusters. 
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