Infocommunications and Radio Technologies, vol. 4, no. 4, pp. 292–300, 2021. Инфокоммуникационные и радиоэлектронные технологии. 2021. Т. 4, № 4. С. 292—300. ISSN: 2587-9936

УДК 537.87, 537.622.4

Особенности формирования брэгговских запрещенных зон в периодических ферромагнитных структурах, управляемых спин-поляризованных током

¹ Матвеев О. В., ^{1,2} Морозова М. А.

¹Саратовский государственный университет им. Н. Г. Чернышевского ул. Астраханская, 83, Саратов, 410012, Российская Федерация olvmatveev@gmail.com ² Московский физико-технический институт Институтский пер., д. 9, г. Долгопрудный, 141701, Российская Федерация татогогоvama@yandex.ru

> Получено: 19 января 2022 г. Отрецензировано: 25 января 2022 г. Принято к публикации: 25 января 2022 г.

Аннотация: Представлены результаты теоретического исследования формирования запрещенных зон в периодических структурах двух типов: «ферромагнитная пленка с периодической системой канавок, нагруженная слоем нормального металла» и «ферромагнитная пленка с периодической системой полосок нормального металла». Продемонстрирована возможность динамического управления характеристиками запрещенных зон с помощью спин-поляризованного тока в нормальном металле.

Ключевые слова: спиновые волны, ферромагнетики, магнонный кристалл, спинполяризованный ток.

Для цитирования (ГОСТ 7.0.5—2008): Матвеев О. В., Морозова М. А. Особенности формирования брэгговских запрещенных зон в периодических ферромагнитных структурах, управляемых спин-поляризованных током // Инфокоммуникационные и радиоэлектронные технологии. 2021. Т. 4, № 4. С. 292—300.

Для цитирования (ГОСТ 7.0.100—2018): Матвеев, О. В. Особенности формирования брэгговских запрещенных зон в периодических ферромагнитных структурах, управляемых спин-поляризованных током / О. В. Матвеев, М. А. Морозова // Инфокоммуникационные и радиоэлектронные технологии. — 2021. — Т. 4, № 4. — С. 292—300.

Features of the Bragg Band Gap Formation in Periodic Ferromagnatic Structures, Controlled by Spin-Polarized Current

O. V. Matveev¹ and M. A. Morozova^{1,2}

 ¹ Saratov State University
83, Astrakhanskaya St., Saratov, 410012, Russian Federation olvmatveev@gmail.com
² Moscow Institute of Physics and Technology
9, Institutskiy per., Dolgoprudny, 141701, Russian Federation mamorozovama@yandex.ru

> Received: January 19, 2022 Peer-reviewed: January 25, 2022 Accepted: January 25, 2022

Abstract: The results of theoretical study of band gaps formation in periodic structures of two types are presented: "ferromagnetic film with a periodic system of grooves loaded with a layer of normal metal" and "ferromagnetic film with a periodic system of strips of normal metal". The possibility of dynamic control of the band gaps characteristics using a spin-polarized current in a normal metal is demonstrated.

Keywords: spin waves, ferromagnetics, magnonic crystal, spin-polarized current.

For citation (IEEE): O. V. Matveev and M. A. Morozova, "Features of the Bragg Band Gap Formation in Periodic Ferromagnatic Structures, Controlled by Spin-Polarized Current", *Infocommunications and Radio Technologies*, vol. 4, no. 4, pp. 292–300, 2021.

1. Введение

Важной современной задачей СВЧ микроэлектроники является исследование способов управления спиновыми волнами в ферромагнитных структурах. Одним из таких направлений исследований является магнонная спинтроника [1—3], занимающаяся изучением взаимодействия спиновых волн со спин-поляризованным током. Спин-поляризованный ток это направленное движение спинов электрона, которые могут находиться в одном из двух состояний — либо «спин — вверх», либо «спин — вниз». Указанное взаимодействие является наиболее эффективным в слоистых тонкопленочных структурах типа ферромагнетик / нормальный металл, если металлический слой имеет большое значение угла Холла, а также толщи́ны металлических и ферромагнитных пленок имеют значения порядка единиц или десятков нанометров. Электрический ток в нормальном металле за счет обратного спинового эффекта Холла генерирует спиновый ток в перпендикулярном направлении [4]. Спиновый ток, в свою очередь, за счет передачи крутящего спинового момента на интерфейсе ферромагнетик / нормальный металл приводит к усилению либо ослаблению спиновой волны [5].

В настоящей работе в качестве ферромагнитного материала рассматривались супертонкие пленки железо-иттриевого граната (ЖИГ), в качестве нормального металла — платина. Построена теоретическая модель для исследования особенностей формирования запрещенных зон для спиновых волн в структурах двух типов: «ферромагнитная пленка с периодической системой канавок, нагруженная слоем нормального металла» (рис. 1а) и «ферромагнитная пленка с периодической системой полосок нормального металла» (рис. 1b).

Рис. 1. Схемы структур на основе супертонкой пленке ЖИГ с периодической поверхностью в виде (а) системы канавок и слоя платины, (b) платиновых полосок.

Fig. 1. Schemes of structures based on a ultrathin YIG film with a periodic surface in the form of (a) a system of grooves and a layer of platinum, (b) platinum strips

2. Ферромагнитная пленка с периодической системой канавок, нагруженная слоем нормального металла

Рассмотрим структуру первого типа на основе пленки ЖИГ с периодической системой канавок [6], нагруженную слоем платины (схема структуры представлена на рис. 1а). При построении модели предполагалось, что толщина слоя платины меньше толщины скин-слоя, таким образом, металлизация пленки ЖИГ не создает дополнительных потерь на прохождение спиновой волны. Если в слое платины вдоль оси у течет электрический ток, то за счет спинового эффекта Холла в направлении оси *z* происходит разделение электронов с противоположным направлением спинов течет спиновый ток. В зависимости от направления спиновый ток может усиливать или ослаблять спиновую волну в ферромагнитном слое.

Для построения модели использовалось уравнение Ландау — Лифшица — Гилберта, описывающее эволюцию намагниченности в однородном ферромагнетике, а также граничные условия в форме Слончевского на интерфейсе ферромагнитного слоя и слоя платины [7]. В результате было получено уравнение движения вектора намагниченности в виде:

$$\frac{\partial^2 m}{\partial t^2} + \omega_{\perp}^2 m + js \frac{\omega_M^2 d}{2} \frac{\partial m}{\partial y} + 2\omega_H (\alpha + r)s \frac{\partial m}{\partial t} = 0$$
(1)

где s = +1 для волны, распространяющейся в положительном направлении оси у, s = -1 — в отрицательном направлении у, $\omega_M = 4\pi\gamma M_0$, $\omega_H = \gamma H_0$. $\omega_{\perp} = \sqrt{\omega_H (\omega_H + \omega_M)}$, H_0 — внешнее постоянное магнитное поле, направленное по касательной к плоскости пленки, M_0 — намагниченность насыщения ферромагнетика, γ — гиромагнитное соотношение, d — толщина ферромагнитных пленок. Параметр α описывает потери в ФП, r описывает действие спинового тока, которые имеют вид:

$$r = r_0 \left(\omega_H + \omega_M / 2 \right), \ r_0 = \operatorname{sgn}(\bar{M}_0 \bar{p}) \frac{\tau_{stt} \gamma}{\mu_0 M_0 d},$$
(2)

где \overline{p} — направление спинов электронов, $\overline{\tau}_{stt}$ — спиновый крутящий момент, $J_s = \theta_H J_C$ — плотность спинового тока в металле, θ_H — угол спинового эффекта Холла в металле, J_C — плотность электрического тока.

Дисперсионное соотношение для спиновой волны в структуре ферромагнитная пленка — нормальный металл имеет вид:

$$\Omega_0^{\rm HM} = \Omega_0 + 2js\omega(\alpha + r) = 0, \qquad (3)$$

где параметр Ω_0 , приравненный к нулю, представляет собой дисперсионное соотношение для спиновых волн в одиночной ферромагнитной пленке [7].

Периодическая толщина структуры учитывалась в виде [6]:

$$d = d_0 \left[1 + \delta_d \cos\left(\frac{2\pi}{L} y\right) \right], \tag{4}$$

где $\delta_d = \frac{2\Delta}{\pi d_0} \sin \frac{\pi c}{L}$, $d_0 = b + \frac{\Delta c}{L}$ — эффективная толщина магнонного

кристалла, L — период структуры.

296

Electronics, photonics, instrumentation and communications Электроника, фотоника, приборостроение и связь (2.2)

Рис. 2. Дисперсионные характеристики спиновой волны в структуре на основе ЖИГ с периодической системой канавок, нагруженной слоем платины, при различных значениях электрического тока в платине, который связан со спиновым током соотношением (2): (a) $J_{\rm C} = 0$, (b) $J_{\rm C} = 7 \ 10^9 \ \text{A/m}^2$, (c) $J_{\rm C} = 1 \ 10^{10} \ \text{A/m}^2$, (d) $J_{\rm C} = -7 \ 10^{10} \ \text{A/m}^2$.

Fig. 2. Dispersion characteristics of spin waves in the structure based on YIG film with a periodic system of grooves loaded on of platinum layer at various values of the electric current in platinum layer, which is related to spin-polarized current by Eq. (2): (a) $J_{\rm C} = 0$, (b) $J_{\rm C} = 7 \ 10^9 \ \text{A/m}^2$, (c) $J_{\rm C} = 1 \ 10^{10} \ \text{A/m}^2$, (d) $J_{\rm C} = -7 \ 10^{10} \ \text{A/m}^2$

В результате было получено дисперсионное соотношение для спиновой волны в исследуемой структуре в виде:

$$\begin{vmatrix} \eta_0^{HM} & \kappa_0 \\ \kappa_{-1} & \eta_{-1}^{HM} \end{vmatrix} = 0, \qquad (5)$$

MATVEEV O. V. et al. Features of the Bragg Band Gap Formation... 297 MATBEEB O. B. и др. Особенности формирования брэгговских запрещенных...

где
$$\eta_{0,-1}^{HM} = \frac{\Omega_{0,-1}^{HM}}{2\omega}, \ \kappa_{0,-1} = \frac{\delta_d}{2} V k_{-1,0}, \ V$$
 — групповая скорость, $k_{0,-1}$ — вол-

новые числа прямых и отраженных волн, связанные условием Брэгга $k_0 + k_{-1} = 2k_B$, где $k_B = \pi/L$ — волновое число Брэгга.

Результаты расчета дисперсионных характеристик спиновых волн показаны на рис. 2, синими кривыми показаны действительные части волнового числа, красными — мнимые, мнимая часть волнового числа характеризует затухание волны в среде, причем в центре запрещенной зоны оно максимально.

Видно, что в отсутствие тока (рис. 2а) во всей полосе для прямой волны мнимая часть волнового числа положительна (красные кривые), что связано с затуханием спиновой волны в ферромагнитной среде. При этом формируется запрещенная зона (показана заливкой) — область частот, на которых затухание спиновой волны увеличивается. Введение спинового тока положительной полярности приводит к усилению спиновой волны в области частот вне запрещенной зоны и частичной компенсации потерь в области запрещенной зоны (рис. 2b, с). Изменение направления спинового тока приводит к дополнительному затуханию (рис. 2d).

3. Ферромагнитная пленка с периодической системой полосок нормального металла

Для исследования особенностей формирования запрещенных зон в структуре на основе супертонкой пленки ЖИГ с периодической поверхностью в виде платиновых полосок (рис. 1b) был произведен расчет спектральных характеристик спиновых волн. Для построения модели использовался метод матриц передач [8]. Предполагалось, что электрический ток в слое платины течет вдоль оси у, а толщина слоя платны меньше толщины скин-слоя. Для расчета волновых чисел в металлизированной и не металлизированной ферромагнитной пленке использовалось уравнение (3). Матрицы передачи и отражения соответствующих чередующихся слоев вычислялись по формулам (6):

$$T_{1}(\omega) = \begin{bmatrix} \exp[(-jk_{m} + k_{m})\frac{L}{2}] & 0 \\ 0 & 1/\exp[(-jk_{m} + k_{m})\frac{L}{2}] \end{bmatrix}, \quad (6a)$$
$$T_{2} = \begin{bmatrix} 1/(1-G) & G/(1-G) \\ G/(1-G) & 1/(1-G) \end{bmatrix}, \quad (6b)$$

Electronics, photonics, instrumentation and communications Электроника, фотоника, приборостроение и связь (2.2)

$$T_{3}(\omega) = \begin{bmatrix} \exp[(-jk_{f} + k_{f})]\frac{L}{2}] & 0 \\ 0 & 1/\exp[(-jk_{f} + k_{f})]\frac{L}{2}] \end{bmatrix}, \quad (6B)$$
$$T_{4} = \begin{bmatrix} 1/(1+G) & -G/(1+G) \\ -G/(1+G) & 1/(1+G) \end{bmatrix}. \quad (6F)$$

где k_f и k_m — волновые числа волн в ненагруженном слое ферромагнетика и ферромагнетика, нагруженного нормальным металлом соответственно, $k_{f,m} = \gamma \Delta H / (2V_{f,m})$ — параметры затухания спиновой волны, ΔH ширина линии ферромагнитного резонанса, $V_{f,m}$ — групповые скорости, $G = ((k_m + jk_{m'}) - (k_f + jk_{f'})) / ((k_m + jk_{m'}) + (k_f + jk_{f'}))$ — коэффициент отражения, L — период структуры.

Результирующая матрица передачи структуры будет иметь вид:

$$\mathbf{T} = (\mathbf{T}_1(\boldsymbol{\omega}) \cdot \mathbf{T}_2 \cdot \mathbf{T}_3(\boldsymbol{\omega}) \cdot \mathbf{T}_4)^{\mathrm{N}}, \tag{7}$$

где *N* — количество периодов структуры.

Тогда коэффициент отражения будет иметь вид:

$$R = |T_{21}| / |T_{11}|, \tag{8}$$

где T_{21} , T_{11} — элементы матрицы T (7).

На рис. 3 приведена частотная зависимость коэффициента отражения спиновой волны в ЖИГ-волноводе с периодической системой в виде платиновых полосок. Видно, что в отсутствие спинового тока в платиновых полосках (красная кривая) коэффициент отражения равен нулю во всем диапазоне частот, т. е. структура не проявляет свойств магнонного кристалла. При введении спинового тока, компенсирующего затухание ($r = -\alpha$, черная кривая), формируются три максимума коэффициента отражения. Данные максимумы соответствуют первому брэгговскому резонансу на частоте $f_1 = 3.94$ ГГц, второму брэгговскому резонансу — при $f_2 = 4.22$ ГГц и третьему брэгговскому резонансу при $f_3 = 4.48$ ГГц.

Запрещенные зоны формируются и в случае неполной компенсации затухания ($r = -0.5\alpha$, синяя кривая на рис. 3), в данном случае величина коэффициента отражения оказывается существенно ниже, следовательно, глубина запрещенных зон уменьшается, при этом их положение не изменятеся. В случае если платиновые полоски усиливают затухание спиновой

волны ($r = \alpha$, зеленая кривая на рис. 3), также создается периодическая вариация параметра затухания и формируются запрещенные зоны, их глубина оказывается меньше относительно случая компенсации затухания.

Таким образом, исследуемая структура представляет собой динамический магнонный кристалл [9], в котором введение спинового тока приводит к формированию запрещенных зон в спектре спиновых волн.

 $H_0 = 735$ Э, $M_0 = 140$ Гс, $\Delta H = 0.5$ Э, d = 12 мкм, L = 200 мкм.

Fig. 3. Reflection coefficient dependence on spin wave frequency in the YIG-waveguide with structure of platinum stripes in the absence of spin current (red curve), in the presence of spin current which compensate the spin wave damping in the YIG-waveguide (black, blue and green curves). Calculations were performed with the following parameters:

 $H_0 = 735 \text{ Oe}, M_0 = 140 \text{ Gs}, \Delta H = 0.5 \text{ Oe}, d = 12 \text{ } \mu\text{m}, L = 200 \text{ } \mu\text{m}$

4. Заключение

Таким образом, в данной работе показано, что в периодических композитных структурах на основе ферромагнитных материалов и нормальных металлов возможно управление усилением/ослаблением спиновых волн в ферромагнитных пленках при взаимодействии со спинполяризованным током, а также формированием и параметрами брэгговских запрещенных зон для спиновых волн.

Благодарности

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 19-29-03049-мк).

Список литературы

- 1. Chumak A. V. [et al.] Magnon spintronics // Nature Physics. 2015. V. 11. P. 453–461.
- Hoffmann A., Bader S. D. Opportunities at the Frontiers of Spintronics // Phys. Rev. Applied. 2015. V. 4. P. 047001.
- Brataas A., Kent A. D., Ohno H. Current-induced torques in magnetic materials // Nature Materials. 2012. V. 11. P. 372–381.
- Liu L. [et al.] Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect // Phys. Rep. Lett. 2011. V. 106. P. 036601.
- 5. Pirro P. [et al.] Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers // Appl. Phys. Lett. 2014. V. 104. P. 012402.
- Morozova M. A. [et al.] Band gap formation and control in coupled periodic ferromagnetic structures // Journal of Applied Physics. 2016. V. 120. P. 223901.
- 7. Гуревич А. Г. Магнитные колебания и волны. Москва : Наука, 1994. 464 с.
- Chumak A. V. [et al.] Spin-wave propagation in a microstructured magnonic crystal // Applied Physics Letters. 2009. V. 95. P. 262508.
- Устинова И. А., Никитин А. А., Устинов А. Б. Динамический магнонный кристалл на основе феррит-сегнеэлектрической слоистой структуры // ЖТФ. 2016. Т. 86. С. 155—158.

Информация об авторах

Морозова Мария Александровна, к.ф.-м.н., старший научный сотрудник, лаборатория терагерцовой спинтроники, Московский физико-технический институт, г. Долгопрудный, Российская Федерация; доцент кафедры нелинейной физики, Саратовский государственный университет, г. Саратов, Российская федерация. ORCID 0000-0003-4442-2443.

Матвеев Олег Валерьевич, к.ф.-м.н., старший научный сотрудник лаборатории «Магнитные метаматериалы», Саратовский государственный университет, г. Саратов, Российская федерация. ORCID 0000-0003-2320-907X.

Information about the authors

Maria A. Morozova, PhD in physics and mathematics, senior researcher, Terahertz Spintronics Laboratory, Dolgoprudny, Russian Federation, associate professor of department of nonlinear physics, Saratov State University, Saratov, Russian Federation. ORCID 0000-0003-4442-2443.

Oleg V. Matveev, PhD in physics and mathematics, senior researcher, Laboratory "Magnetic Metamaterials", Saratov State University, Saratov, Russian Federation. ORCID 0000-0003-2320-907X.