Abstract and keywords
Abstract (English):
Achievements, problems and features in the development of planar slow-wave systems for TWTs in the millimeter range are considered. In this article, a review of the characteristics of planar slow-wave systems for mm-band TWTs manufactured using photolithography is presented, which provides the opportunity for researchers and manufacturers to select high-tech designs of planar slow-wave systems for creating efficient broadband TWTs.

Keywords:
slow-wave structure, electron beam, diamond, TWT, dispersion, beam intercept
Text
Publication text (PDF): Read Download
References

1. F. Andre, “Technology, Assembly, and Test of a W-Band Traveling Wave Tube for New 5G High-Capacity Networks,” IEEE Transactions on Electron Devices, vol. 67, no. 7, pp. 2919-2924, 2020, doi:https://doi.org/10.1109/ted.2020.2993243.

2. M. Y. Glyavin, T. Idehara, and S. P. Sabchevski, “Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Tech-nologies,” IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp. 788-797, 2015, doi:https://doi.org/10.1109/tthz.2015.2442836.

3. J. A. Dayton, C. L. Kory, and G. T. Mearini, “Microfabricated mm-wave TWT platform for wireless backhaul,” 2015 IEEE International Vacuum Electronics Conference (IVEC), 2015, doi:https://doi.org/10.1109/ivec.2015.7223799.

4. A. V. Galdetsky, L. A. Saprynskaya, I. M. Sokolova, I. P. Natura, and A. I. Korchagin, “Powerful millimeter wave TWT with precision manufacturing technology for matching structural elements,” Radiotekhnika, vol. 83, no. 7 (10), pp. 73-82, 2019. (In Russ.).

5. J. Wang, “UNIPICcode for simulations of high power microwave devices,” Physics of Plasmas, vol. 16, no. 3, p. 033108, 2009, doi:https://doi.org/10.1063/1.3091931.

6. “CST Studio Suite - Electromagnetic Field Simulation Software [Advertisement],” URL: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/? utm_source=cst.com&utm_medium=301& utm_campaign =cst [Accessed July 12, 2021].

7. “Understand, Predict and Optimize Physics-Based Designs and Processes with COMSOL Multiphysics [Advertisement],” URL: https://www.comsol.com/comsol-multiphysics [Accessed Sept. 15, 2021].

8. D. P. Starinshak, N. D. Smith, and J. D. Wilson, “Using COMSOL Multiphysics software to model anisotropic dielectric and metamaterial effects in folded-waveguide traveling-wave tube slow-wave circuits,” 2008 IEEE International Vacuum Electronics Conference, 2008, doi:https://doi.org/10.1109/ivelec.2008.4556469.

9. “HFSS 3D Electromagnetic Field Simulator for RF and Wireless [Advertisement],” [Online]. https://www.ansys.com/Products/Electronics/ANSYS-HFSS [Accessed Nov. 10, 2021].

10. T. M. Antonsen, Jr., B. Levush, CHRISTINE: A Multifrequency Parametric Simulation Code for Traveling Wave Tube Amplifiers. Washington: NRL Internal report, 1997. 39 p.

11. I. A. Chernyavskiy, D. Chernin, A. Vlasov, B. Levush, T. Antonsen, and J. Legarra, “Model-ing of the wide-band coupled-cavity TWTS with the large-signal code TESLA-CC,” 2011 Ab-stracts IEEE International Conference on Plasma Science, 2011, doi:https://doi.org/10.1109/plasma.2011.5993000.

12. I. A. Chernyavskiy, “Parallel Simulation of Independent Beam-Tunnels in Multiple-Beam Klys-trons Using TESLA,” IEEE Transactions on Plasma Science, vol. 36, no. 3, pp. 670-681, 2008, doi:https://doi.org/10.1109/tps.2008.920270.

13. I. Chernyavskiy, J. Petillo, A. Vlasov, B. Levush, and E. Wright, “End-to-end analysis using MICHELLE and TESLA codes,” 2009 IEEE International Conference on Plasma Science - Abstracts, 2009, doi:https://doi.org/10.1109/plasma.2009.5227554.

14. I. A. Chernyavskiy, “Validation study of the TESLA model for extended interaction klystron,” 2011 IEEE International Vacuum Electronics Conference (IVEC), 2011, doi:https://doi.org/10.1109/ivec.2011.5746889.

15. I. A. Chernyavskiy, “Modeling of a G-band extended interaction klystron using the large-signal code TESLA,” 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010, doi:https://doi.org/10.1109/icimw.2010.5613043.

16. I. A. Chernyavskiy, “TESLA modeling of the linear-beam amplifiers,” 2009 IEEE Interna-tional Vacuum Electronics Conference, 2009, doi:https://doi.org/10.1109/ivelec.2009.5193388.

17. S. J. Cooke, A. N. Vlasov, B. Levush, I. A. Chernyavskiy, and T. M. Antonsen, “GPU-accelerated 3D time-domain simulation of vacuum electron devices,” 2011 IEEE International Vacuum Electronics Conference (IVEC), 2011, doi:https://doi.org/10.1109/ivec.2011.5746997.

18. A. Vlasov, T. Antonsen, D. Chernin, B. Levush, and E. Wright, “Simulation of microwave devices with external cavities using MAGY,” Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524), doi:https://doi.org/10.1109/ivelec.2002.999270.

19. A. N. Vlasov, S. J. Cooke, B. Levush, T. M. Antonsen, I. A. Chernyavskiy, and D. P. Cher-nin, “16.1: 2D modeling of beam-wave interaction in coupled cavity TWT with TESLA,” 2010 IEEE International Vacuum Electronics Conference (IVEC), 2010, doi:https://doi.org/10.1109/ivelec.2010.5503379.

20. A. A. Borisov, “The development of vacuum microwave devices in Istok,” 2011 IEEE Inter-national Vacuum Electronics Conference (IVEC), 2011, doi:https://doi.org/10.1109/ivec.2011.5747063.

21. J. A. Dayton, C. L. Kory, and G. T. Mearini, “Microfabricated mm-wave TWT platform for wireless backhaul,” 2015 IEEE International Vacuum Electronics Conference (IVEC), 2015, doi:https://doi.org/10.1109/ivec.2015.7223799.

22. G. Zaginaylov, “Full-wave analysis of the field distribution of natural modes in the rectangular waveguide grating based on singular integral equation method,” IEEE Transactions on Plas-ma Science, vol. 30, no. 3, pp. 1151-1159, 2002, doi:https://doi.org/10.1109/tps.2002.801613.

23. T. A. Karetnikova, “Linear theory of multisection broadband TWTs with an inhomogeneous spiral slow-wave system,” Izvestiya vuzov. Applied non-linear dynamics, vol. 20, no. 6, pp. 148-159, 2012. (In Russ.).

24. A. G. Rozhnev, N. M. Ryskin, T. A. Karetnikova [et al.], “Investigation of the characteristics of the retarding system of a millimeter-wave traveling-wave lamp with a strip electron beam,” Izv. Vuzov. Radiophysics, vol. 56, no. 8. pp. 601-613, 2013. (In Russ.).

25. N. A. Bushuev, “Calculation of eigenmodes of a diaphragmed waveguide for gyro-devices with slow waves,” Proceedings of the 4th IEEE Saratov - Penza Chapter Workshop "Ma-chine Design in Applied Electrodynamics and Electronics" (Saratov, Russia, September 26, 1999), pp. 87-91. (In Russ.).

26. A. G. Rozhnev, N. M. Ryskin, D. V. Sokolov [at al.], “New 2.5D code for modeling of non-linear multisignal amplification in a wideband helix traveling wave tube,” Fifth IEEE Interna-tional Vacuum Electronics Conference, (Monterey, California, April 27-29, 2004). pp. 144-145.

27. B. G. Goldenberg, “Basic principles of LIGA technology,” URL: www.ssrc.inp.nsk.su/CKP/ lections/Theory_of_LIGA-tecnology.pdf [Accessed Oct. 11, 2020]. (In Russ.).

28. J. M. Thevenoud, B. Mercier, T. Bourouina [at al.], “Drie Technology: from Micro to Nanoapplications,” URL: https://www.researchgate.net/publication/228781147_ [Accessed Oct. 12, 2017].

29. “MEMS and MOEMS Technology and Applications,” 2000, doi:https://doi.org/10.1117/3.2265068.

30. P. Siegel, “Terahertz technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 910-928, 2002, doi:https://doi.org/10.1109/22.989974.

31. B. Carlsten, “Technology development for a mm-wave sheet-beam traveling-wave tube,” IEEE Transactions on Plasma Science, vol. 33, no. 1, pp. 85-93, 2005, doi:https://doi.org/10.1109/tps.2004.841172.

32. D. Xu, “A Semi-Analytic Numerical Algorithm of Diamond Pillbox Windows for Terahertz Vacuum Electron Device Applications,” IEEE Electron Device Letters, vol. 42, no. 2, pp. 252-255, 2021, doi:https://doi.org/10.1109/led.2020.3045531.

33. S. Xin, J. Xu, H. Yin, Y. Wei, L. Yue, and W. Wang, “Research on a 3-D Microstrip Mean-der-line Slow-wave Structure Traveling Wave Tube,” 2021 22nd International Vacuum Elec-tronics Conference (IVEC), 2021, doi:https://doi.org/10.1109/ivec51707.2021.9722436.

34. J. M. Socuellamos, R. Letizia, R. Dionisio, and C. Paoloni, “Pillared Meander Line Slow Wave Structure for W-band Traveling Wave Tubes,” 2021 22nd International Vacuum Elec-tronics Conference (IVEC), 2021, doi:https://doi.org/10.1109/ivec51707.2021.9722426.

35. Y. Xie, N. Bai, X. Sun, P. Pan, J. Cai, and J. Feng, “Design and Fabrication of D-band Planar Double Microstrip Meander Line Slow Wave Structure,” 2021 22nd International Vacuum Electronics Conference (IVEC), 2021, doi:https://doi.org/10.1109/ivec51707.2021.9722535.

36. R. Mannette, B. Shaw, and F. Hendry, “An m-type backward-wave oscillator with photocop-ied delay line,” 1965 International Electron Devices Meeting, 1965, doi:https://doi.org/10.1109/iedm.1965.187554.

37. “Printed-circuit TWT’s promis cost cuts,” Electronics, vol. 45, no. 25, pp. 35-36, 1972.

38. A. W. Scott, “Next in tubes the printed circuit TWT,” Electronic Design, vol. 20, no. 26. pp. 28, 30, 1972.

39. E. A. Rakova, “Designing a W-band TWT with a moderating system based on a diamond heat sink,” Advances in modern radio electronics, no. 2, p. 51, 2016. (In Russ.).

40. A. V. Galdetsky and E. A. Bogomolova, “Planar type slow-motion system,” Patent of the Russian Federation No. 2653573, priority dated March 6, 2017. (In Russ.).


Login or Create
* Forgot password?