PROSPECTS OF MICROMINIATURIZATION OF MULTICHANNEL MULTI-FREQUENCY RADIOTHERMOGRAPHS
Abstract and keywords
Abstract (English):
This work is devoted to solving a fundamental scientific problem – the development of scientific foundations and methodology for creating a prototype of a hardware and software complex for noninvasive detection and localization of pathologies of living human tissues based on dynamic radiothermic mapping, designed for early diagnosis of oncological diseases and monitoring of their treatment processes, and can also be used in personalized medicine. The use of modern software and technology of mono-lithic integrated microwave circuits will allow us to apply new approaches to the de-velopment of a fundamentally new device – a multi-channel multi-frequency radio-thermograph based on MIC technology.

Keywords:
radiothermometry, radiothermograph, multi-channel, multi-frequency.
Text
Publication text (PDF): Read Download
References

1. K. L. Carr, “Microwave radiometry: its importance to the detection of cancer,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 12, pp. 1862-1869, 1989, doi:https://doi.org/10.1109/22.44095.

2. S.Vesnin et al., “Modern microwave thermometry for breast cancer,” Journal of Molecular Imag-ing & Dynamics, 2017. URL: https://www.longdom.org/open-access/modern-microwave-thermometry-for-breast-cancer-2155-9937-1000136.pdf.

3. I. Goryanin et al., “Passive microwave radiometry in biomedical studies,” Drug Discovery To-day, vol. 25, no. 4, pp. 757-763, Apr. 2020, doi:https://doi.org/10.1016/j.drudis.2020.01.016.

4. K. Toutouzas et al., “Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a pro-spective multicenter study,” Atherosclerosis, vol. 262, pp. 25-30, Jul. 2017, doi:https://doi.org/10.1016/j.atherosclerosis.2017.04.019.

5. M. Drakopoulou, C. Moldovan, K. Toutouzas, and D. Tousoulis, “The role of micro-wave radi-ometry in carotid artery disease. Diagnostic and clinical prospective,” Current Opinion in Pharma-cology, vol. 39, pp. 99-104, Apr. 2018, doi:https://doi.org/10.1016/j.coph.2018.02.008.

6. E. Groumpas, M. Koutsoupidou, I. S. Karanasiou, C. Papageorgiou, and N. Uzunoglu, “Real-Time Passive Brain Monitoring System Using Near-Field Microwave Radiometry,” IEEE Transac-tions on Biomedical Engineering, vol. 67, no. 1, pp. 158-165, Jan. 2020, doi:https://doi.org/10.1109/tbme.2019.2909994.

7. V. S. Kublanov & V. I. Borisov, “Biophysical evaluation of microwave radiation for functional research of the human brain”, in Proc. IFMBE, pp.1045-1048, 2017.

8. A. G. Gudkov et al., “Use of Multichannel Microwave Radiometry for Functional Diagnostics of the Brain,” Biomedical Engineering, vol. 53, no. 2, pp. 108-111, Jul. 2019, doi:https://doi.org/10.1007/s10527-019-09887-z.

9. D. V. Cheboksarov et al., “Diagnostic opportunities of noninvasive brain thermomonitoring”, Anesteziologiia i Reanimatologiia, vol. 60 (1), pp. 66-69, 2015

10. O. A. Shevelev et al., “Therapeutic Hypothermia Systems,” Biomedical Engineering, vol. 54, no. 6, pp. 397-401, Mar. 2021, doi:https://doi.org/10.1007/s10527-021-10048-4.

11. D. B. Rodrigues et al., “Microwave radiometry for noninvasive monitoring of brain tempera-ture” in Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and ther-apy, Springer, Cham, 2018.

12. K. Laskari et al., “Joint microwave radiometry for inflammatory arthritis assessment,” Rheuma-tology, vol. 59, no. 4, pp. 839-844, Sep. 2019, doi:https://doi.org/10.1093/rheumatology/kez373.

13. V. M. Ravi, A. K. Sharma, and K. Arunachalam, “Pre-Clinical Testing of Microwave Radiome-ter and a Pilot Study on the Screening Inflammation of Knee Joints,” Bioelectromagnetics, Jul. 2019, doi:https://doi.org/10.1002/bem.22203.

14. K. Arunachalam et al., “Detection of Vesicoureteral Reflux Using Microwave Radiometry-System Characterization With Tissue Phantoms,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 6, pp. 1629-1636, Jun. 2011, doi:https://doi.org/10.1109/tbme.2011.2107515.

15. S. Jacobsen, Ø. Klemetsen, and Y. Birkelund, “Vesicoureteral reflux in young children: a study of radiometric thermometry as detection modality using an ex vivo porcine model”, Physics in Med-icine & Biology, vol. 57, no.17, p. 5557, 2012.

16. J. P. Crandall et al., “Measurement of Brown Adipose Tissue Activity Using Microwave Radi-ometry and 18F-FDG PET/CT,” Journal of Nuclear Medicine, vol. 59, no. 8, pp. 1243-1248, Feb. 2018, doi:https://doi.org/10.2967/jnumed.117.204339.

17. V. V. Andreev, and E. R. Barantsevich, “Treatment of acute and chronic pain syndromes in lumbosacral radiculopathy,” Effect. Pharmacother., vol. 4, pp. 42-49, 2018.

18. A. V. Tarakanov et al., “Influence of Ambient Temperature on Recording of Skin and Deep Tissue Temperature in Region of Lumbar Spine,” European Journal of Molecular & Clinical Medi-cine, vol. 7(1), pp. 21-26, 2020.

19. A. V. Tarakanov, A. A. Tarakanov, S. Vesnin, V. V. Efremov, I. Goryanin, and N. Roberts, “Microwave Radiometry (MWR) temperature measurement is related to symptom severity in pa-tients with Low Back Pain (LBP),” Journal of Bodywork and Movement Therapies, vol. 26, pp. 548-552, Apr. 2021, doi:https://doi.org/10.1016/j.jbmt.2021.02.005.

20. B. Osmonov et al., “Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan,” Diagnostics, vol. 11, no. 2, p. 259, Feb. 2021, doi:https://doi.org/10.3390/diagnostics11020259.

21. P. Momenroodaki, W. Haines, M. Fromandi, and Z. Popovic, “Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry,” IEEE Transactions on Mi-crowave Theory and Techniques, vol. 66, no. 5, pp. 2535-2545, May 2018, doi:https://doi.org/10.1109/tmtt.2017.2776952.

22. P. R. Stauffer et al., “Stable microwave radiometry system for long term monitoring of deep tissue temperature” Energy-based Treatment of Tissue and Assessment VII. - International Society for Optics and Photonics, vol. 8584, p. 85840R, 2013.

23. W. Haines et al., “Wireless system for continuous monitoring of core body temperature”, in Proc. IEEE MTT-S International Microwave Symposium (IMS)., Honololu, USA, June 4-9, 2017.

24. Z. Popovic, P. Momenroodaki, and R. Scheeler, “Toward wearable wireless thermometers for internal body temperature measurements,” IEEE Communications Magazine, vol. 52, no. 10, pp. 118-125, Oct. 2014, doi:https://doi.org/10.1109/mcom.2014.6917412.

25. P. Momenroodaki, W. Haines, Z. Popovic, “Non-invasive microwave thermometry of multilayer human tissues” in Proc. IEEE MTT-S Interna-tional Microwave Symposium (IMS), Hon-ololu, USA, June 4-9, 2017.

26. V. M. Ravi, and K.Arunachalam, “A low noise stable radiometer front-end for passive microwave tissue thermometry,” Journal of Electromagnetic Waves and Applications, vol. 33(6), pp. 743-758, 2019.

27. P. F. Maccarini et al., “A novel compact micro-wave radiometric sensor to noninvasively track deep tissue thermal profiles,” in 2015 European Microwave Conference (EuMC), pp. 690-693, 2015.

28. K. Kräuchi et al., “Functional link between distal vasodilation and sleep-onset latency?” Amer. J. Physiol. - Reg., Integr. Comparative Physiol., 2000, vol. 278, no. 3, pp. R741-R748.

29. N. E. Rosenthal et al., “Effects of light treatment on core body temperature in seasonal affective disorder,” Biological Psychiatry, vol. 27, no. 1, pp. 39-50, Jan. 1990, doi:https://doi.org/10.1016/0006-3223(90)90018-w.

30. J. E. Gale, H. I. Cox, J. Qian, G. D. Block, C. S. Colwell, and A. V. Matveyenko, “Disruption of Circadian Rhythms Accelerates Development of Diabetes through Pancreatic Beta-Cell Loss and Dysfunction,” Journal of Biological Rhythms, vol. 26, no. 5, pp. 423-433, Sep. 2011, doi:https://doi.org/10.1177/0748730411416341.

31. D. Jeyaraj et al., “Circadian rhythms govern cardiac repolarization and arrhythmogenesis,” Nature, vol. 483, no. 7387, pp. 96-99, Feb. 2012, doi:https://doi.org/10.1038/nature10852.

32. J. Shaeffer, A. M. El-Mahdi, A. E. Hamwey, and K. L. Carr, “Detection of extravasation of antineoplastic drugs by microwave radiometry,” Can-cer Letters, vol. 31, no. 3, pp. 285-291, Jun. 1986, doi:https://doi.org/10.1016/0304-3835(86)90149-7.

33. S. Jacobsen and P. R. Stauffer, “Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus,” IEEE Transactions on Microwave Theory and Tech-niques, vol. 50, no. 7, pp. 1737-1746, Jul. 2002, doi:https://doi.org/10.1109/tmtt.2002.800424.

34. S. Mizushina et al., “Non-invasive temperature profiling using multi-frequency micro-wave radiometry in the presence of water-filled bolus,” IE-ICE Trans. Electron., vol. 74, no. 5, pp. 1293-1302, May 1991.

35. J. W. Hand et al., “Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling,” Phys-ics in Medicine and Biology, vol. 46, no. 7, pp. 1885-1903, Jun. 2001, doi:https://doi.org/10.1088/0031-9155/46/7/311.

36. D. S. Moran and L. Mendal, “Core Temperature Measurement,” Sports Medicine, vol. 32, no. 14, pp. 879-885, 2002, doi:https://doi.org/10.2165/00007256-200232140-00001.

37. C. Byrne and C. L. Lim, “The ingestible telemet-ric body core temperature sensor: a review of validity and exercise applications,” British Journal of Sports Medicine, vol. 41, no. 3, pp. 126-133, Mar. 2007, doi:https://doi.org/10.1136/bjsm.2006.026344.

38. D. M. Wilkinson, J. M. Carter, V. L. Richmond, S. D. Blacker, and M. P. RAYSON, “The Effect of Cool Water Ingestion on Gastrointestinal Pill Temperature,” Medicine & Science in Sports & Exercise, vol. 40, no. 3, pp. 523-528, Mar. 2008, doi:https://doi.org/10.1249/mss.0b013e31815cc43e.

39. G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, “Accurate Temperature Imaging Based on Intermolecular Coherences in Magnetic Res-onance,” Science, vol. 322, no. 5900, pp. 421-424, Oct. 2008, doi:https://doi.org/10.1126/science.1163242.

40. J. D. Kraus, Radio Astronomy, 2nd ed. Cygnus-Quasar Books, 1976.

41. F. T. Ulaby, R. K. Moore, and A. K. Fung, Mi-crowave Remote Sensing: Active and Passive, Volume 1: Microwave Remote Sensing Fundamen-tals and Radiometry, Artech House, 1981.

42. O. Klemetsen, Design and evaluation of a medi-cal microwave radiometer for observing temperature gradients subcutaneously in the human body: PhD thesis. University of Tromso, faculty of science department of physics and technology, Trom-so, 2011.

43. M. Sedankin, D. Chupina, S. Vesnin, I. Nelin, and V. Skuratov, “Development of a miniature microwave radiothermograph for monitoring the internal brain temperature,” Eastern-European Journal of Enterprise Technologies, vol. 3, no. 5 (93), pp. 26-36, Jun. 2018, doi:https://doi.org/10.15587/1729-4061.2018.134130.

44. D.N. Chupina, M.K. Sedankin, S. G. Vesnin, “Application of modern technologies of mathematical simulation for the development of medical equipment,” in 2017 IEEE 11th International Conference on Application of Information and Com-munication Technologies (AICT), p. 1-5, 2017.

45. R. Gawande and R. Bradley, “Low-Noise Am-plifier at 2.45 GHz [TC Contests,” IEEE Mi-crowave Magazine, vol. 11, no. 1, pp. 122-126, Feb. 2010, doi:https://doi.org/10.1109/mmm.2009.935619.

46. Chia-Song Wu, Tahyeong Lin, Chien-Huang Chang, and Hsien-Ming Wu, “A ul-trawideband 3-10 GHz low-noise amplifier MMIC using in-ductive-series peaking technique,” Electric Information and Control Engineering, vol. 2, pp. 5667-5670, 2020.

47. V. G. Tikhomirov et al., “Optimization of the parameters of HEMT GaN/AlN/AlGaN heterostructures for microwave transistors using numerical simulation,” Semiconductors, vol. 50, no. 2, pp. 244-248, Feb. 2016, doi:https://doi.org/10.1134/s1063782616020263.

48. V. G. Tikhomirov, A. G. Gudkov, S. V. Agas-ieva, D. D. Dynaiev, M. K. Popov, and S. V. Chizhikov, “Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation,” Journal of Physics: Confer-ence Series, vol. 1410, no. 1, p. 012191, Dec. 2019, doi:https://doi.org/10.1088/1742-6596/1410/1/012191.


Login or Create
* Forgot password?