AFM STUDY OF THE INTERNAL STRUCTURE OF [C60@{H2O}N]K CLUSTERS OF HYDRATED C60@{H2O}N FULLERENE COMPLEXES
Abstract and keywords
Abstract (English):
AFM methods were used to confirm the presence of a harder central core surrounded by a loose shell in [C60@{H2O}n]k clusters and to estimate the adhesion force between the core and the loose shell.

Keywords:
aqueous colloidal solutions of C60 fullerene, [C60@{H2O}n]k cluster structure, AFM methods, micromechanical properties
Text
Publication text (PDF): Read Download
References

1. D. F. Kronholm et al., Blends of fullerene derivatives, and uses thereof in electronic devices. Patent №: US 8,945,807 B2, date of Patent : Feb. 3, 2015.

2. S. A. Bakhramov, A. M. Kokhkharov, U. K. Makhmanov, and B. A. Aslonov, “Self-Organization of Fullerene C60/70 Molecules in Solutions and in the Volume of Drying Drop,” Scientific-technical journal, vol. 24, iss. 5, Article 6, 2020.

3. P. J. F. Harris, “Fullerene Polymers : A Brief Review,” Journal of Carbon Research, vol. 6, no. 4, p. 71, Nov. 2020, doi:https://doi.org/10.3390/c6040071.

4. M. P. Evstigneev, A. S. Buchelnikov, D. P. Voronin, Y. V. Rubin, L. F. Belous, Y. I. Prylutskyy, U. Ritter, “Complexation of C60 fullerene with aromatic drugs,” ChemPhysChem, vol 14, no. 3, pp. 568-578, 2013.

5. S. Prylutska et al., “Water-Soluble Pristine Fullerenes C60 Increase the Specific Conductivity and Capacity of Lipid Model Membrane and form the Channels in Cellular Plasma Membrane,” J. Biomed. Nanotechnol., vol. 8, no. 3, pp. 522-527, Jun. 2012, doi:https://doi.org/10.1166/jbn.2012.1404.

6. A. Kumar, “Fullerenes for biomedical applications,” Journal of Environmental and Applied Bioresearch, vol. 3, no. 4, pp. 175-191.

7. U. Ritter et al., “Structural Features of Highly Stable Reproducible C60Fullerene Aqueous Colloid Solution Probed by Various Techniques,” Fullerenes, Nanotubes and Carbon Nanostructures, vol. 23, no. 6, pp. 530-534, Jun. 2015, doi:https://doi.org/10.1080/1536383x.2013.870900.

8. M. Chaplin, Water structure and behavior, London : South Bank University, June 2000.

9. P. Scharff et al., “Structure of C60 fullerene in water: spectroscopic data,” Carbon, vol. 42, no. 5-6, pp. 1203-1206, Jan. 2004, doi: https://doi.org/10.1016/j.carbon.2003.12.053.

10. G. V. Andrievsky, V. K. Klochkov, E. L. Karyakina, and N. O. Mchedlov-Petrossyan, “Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy,” Chemical Physics Letters, vol. 300, iss. 3-4, pp. 392-396,1999, doi:https://doi.org/10.1016/S0009-2614(98)01393-1.

11. U. K. Makhmanov, Abdulmutallib Kokhkharov, S. A. Bakhramov, and Donats Erts, “The formation of self-assembled structures of C60 in solution and in the volume of an evaporating drop of a colloidal solution,” Lithuanian Journal of Physics, vol. 60, no. 3, pp. 194-204, Aug. 2020, doi:https://doi.org/10.3952/physics.v60i3.4306.

12. G. V. Andrievsky et al., “Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy,” Chemical Physics Letters, vol. 364, no. 1-2, pp. 8-17, 2002.

13. D. A. Peidys, A. A. Hernandez, and M. P. Evstigneev, “The interplay of enthalpic/entropic fac-tors in nanoparticles’ aggregation in solution : The case of fullerene C60,” Journal of Molecular Liquids, vol. 318, pp. 114043-114043, Nov. 2020, doi:https://doi.org/10.1016/j.molliq.2020.114043.

14. U. Ritter et al., “Structural Features of Highly Stable Reproducible C60Fullerene Aqueous Colloid Solution Probed by Various Techniques,” Fullerenes, Nanotubes and Carbon Nanostructures, vol. 23, no. 6, pp. 530-534, Jun. 2015, doi:https://doi.org/10.1080/1536383x.2013.870900.

15. Y. I. Prylutskyy et al., “C60 fullerene aggregation in aqueous solution,” Physical Chemistry Chemical Physics, vol. 15, no. 23, pp. 9351-9360, May 2013, doi:https://doi.org/10.1039/C3CP50187F.


Login or Create
* Forgot password?