ЭКСПЕРИМЕНТ ПО ГЕНЕРАЦИИ БЛИЗКИХ ПО ФОРМЕ СВЕРХВЫСОКОЧАСТОТНЫХ ХАОТИЧЕСКИХ РАДИОИМПУЛЬСОВ
Аннотация и ключевые слова
Аннотация (русский):
Предлагается метод генерации хаотических радиоимпульсов при помощи аналогового генератора хаотических колебаний. Метод позволяет воспроизводить форму импульсов как одним и тем же экземпляром генератора хаотических колебаний, так и разными экземплярами конструктивно идентичных генераторов. Форма импульсов управляемо изменяется и воспроизводится путем изменения напряжения питания генератора хаотических колебаний. Разработан макет из четырех генераторов, экспериментально доказывающий данную возможность в диапазоне частот от 100 до 500 МГц. Предлагаемый метод необходим для создания способов когерентного приема хаотических СШП колебаний СВЧ диапазона и для когерентного излучения хаотических сигналов в задачах диаграммобразования.

Ключевые слова:
сверхширокополосные хаотические радиоимпульсы, сверхширокополосные сигналы, хаотические сигналы, когерентное излучение хаотических сигналов
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Liuqing Y., Giannakis G. B. Ultra-wideband communications : An idea whose time has come // IEEE Signal Process. Mag. 2004. Т. 6. С. 26—54.

2. Niemelä V., Haapola J., Hämäläinen M., Iinatti J. An Ultra Wideband Survey : Global Regulations and Impulse Radio Research Based on Standards // IEEE Communications Surveys Tutorials. 2017. Т. 19, № 2. С. 874—890.

3. Breed G. A summary of FCC rules for ultra wideband communications // High Freq. Electron. 2005. Т. 4, № 1. С. 42—44.

4. Mandke K., Nam H., Yerramneni L., Zuniga C., Rappaport T. The Evolution of Ultra Wide Band Radio for Wireless Personal Area Network // High Freq. Electron. 2003. № 5. С. 22—32.

5. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). Available online: http://www.ieee802.org/15/pub/TG3a.html (accessed on 24 January 2023).

6. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Press : New York City, NY, USA, 2016. 709 с.

7. IEEE Std 802.15.6-2012; IEEE Standard for Local and metropolitan area networks—Part 15.6: Wire-less Body Area Networks. IEEE Press : New York City, NY, USA, 2012. 271 с.

8. IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020); IEEE Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. IEEE Press : New York City, NY, USA, 2020. 174 с.

9. Stocker M. et al. On the Performance of IEEE 802.15. 4z-Compliant Ultra-Wideband Devices // 2022 Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench). IEEE, 2022. С. 28—33.

10. Chen H. et al. A 4-to-9 GHz IEEE 802.15. 4z-Compliant UWB Digital Transmitter with Re-configurable Pulse-Shaping in 28nm CMOS // 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2022. С. 99—102.

11. Apple U1 TMKA75 Ultra Wideband (UWB) Chip Analysis. Available online: https://www.techinsights.com/blog/apple-u1-tmka75-ultra-wideband-uwb-chip-analysis (accessed on 24 January 2023).

12. What Is Ultra-Wideband, and How Does It Work? Available online: https://www.smartprix.com/bytes/phones-with-uwb-ultrawideband-connectivity/ (accessed on 24 January 2023).

13. Tam W. M., Lau F. C. M., Tse C. K. Digital Communications With Chaos : Multiple Access Techniques and Performance Evaluation. Oxford, U.K. : Elsevier Science, 2010. 258 c.

14. Messaadi M. et al. GoF Based Chaotic On-Off Keying: A New Non-Coherent Modulation for Direct Chaotic Communication // Journal of Communications Technology and Electronics. 2021. Т. 66, Suppl 2. С. S194—S200.

15. Chaotic Signals in Digital Communications, 1st ed.; Eisencraft M., Attux R., Suyama R., Eds.; Boca Raton : CRC Press, 2014.

16. Kaddoum G. Wireless chaos-based communication systems : A comprehensive survey // IEEE Access. 2016. Т. 4. С. 2621—2648.

17. Quyen N. X., Van Yem V., Hoang T. M. Chaotic modulation based on the combination of CPPM and CPWM // Proceedings of the Joint INDS’11 & ISTET’11. IEEE, 2011. С. 1—6.

18. Munirathinam R. et al. Chaotic Non-Coherent Pulse Position Modulation Based Ultra-Wideband Communication System // 2021 IEEE Microwave Theory and Techniques in Wire-less Communications (MTTW). IEEE, 2021. С. 1—6.

19. Onunkwo U., Li Y. On the optimum pulse-position modulation index for ultra-wideband communication // Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies : Frontiers of Mobile and Wireless Communication. IEEE, 2004. Т. 1. С. 77—80.

20. Chien T. I. et al. Design of multiple-accessing chaotic digital communication system based on Interleaved Chaotic Differential Peaks Keying (I-CDPK) // 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. IEEE, 2008. С. 638—642.

21. Hong Y. P., Jin S. Y., Song H. Y. Coded N-ary PPM UWB impulse radio with chaotic time hopping and polarity randomization // 2007 3rd International Workshop on Signal Design and Its Applications in Communications. IEEE, 2007. С. 252—256.

22. Yao Z. J. et al. Non-crosstalk real-time ultrasonic range system with optimized chaotic pulse position-width modulation excitation // 2008 IEEE Ultrasonics Symposium. IEEE, 2008. С. 729—732.

23. Zhang L. et al. A new pulse modulation method for underwater acoustic communication combined with multiple pulse characteristics // 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2018. С. 1—6.

24. Yang H., Jiang G. P. Delay-variable synchronized chaotic pulse position modulation for ultra-wide bandwidth communication // 2006 International Conference on Communications, Circuits and Systems. IEEE, 2006. Т. 4. С. 2692—2694.

25. Rulkov N. F. et al. Digital communication using chaotic-pulse-position modulation // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2001. Т. 48, № 12. С. 1436—1444.

26. Quyen N. X. et al. Digital communication using MxN-ary chaotic pulse width-position modulation // The 2012 International Conference on Advanced Technologies for Communications. IEEE, 2012. С. 362—366.

27. Zhu Q., Zou C., Jia Z. Performance Analysis of Ultra Wideband Communication System with Time-Hopping M-ary Biorthogonal Pulse Position Modulation // 2006 First International Conference on Communications and Networking in China. IEEE, 2006. С. 1—6.

28. Tang G. et al. A hybrid spread spectrum communication method based on chaotic sequence // 2021 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2021. С. 1—5.

29. Chen Z., Zhang L., Wu Z. NGD Analysis of Turtle-Shape Microstrip Circuit // IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS. 2020. Т. 67, №. 11. С. 2492—2496.

30. Erkucuk S., Kim D. I. Combined M-ary code shift keying/binary pulse position modulation for ultra wideband communications // IEEE Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, 2004. Т. 2. С. 804—808.

31. Liu C., Cheng J., Zhang R. An orthogonal mixed chaotic spread spectrum algorithm for satellite communication // 2019 12th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2019. Т. 2. С. 235—240.

32. Manikandan M. S. K. et al. A Novel Pulse Based Ultrawide Band System Using Chaotic Spreading Sequences // 2007 2nd International Conference on Communication Systems Soft-ware and Middleware. IEEE, 2007. С. 1—5.

33. Kotti A. et al. Asynchronous DS-UWB communication using spatiotemporal chaotic wave-forms and sequences // 2009 First International Conference on Communications and Networking. IEEE, 2009. С. 1—5.

34. Yuan G. et al. Enhancing the security of chaotic direct sequence spread spectrum communication through WFRFT // IEEE Communications Letters. 2021. Т. 25, № 9. С. 2834—2838.

35. Ren H. P., Bai C. Kong Q., Baptista M. S., Grebogi C. A chaotic spread spectrum system for underwater acoustic communication // Physica A. 2017. Т. 478. С. 77—92.

36. Ren H. P. et al. Cross correction and chaotic shape-forming filter based quadrature multi-carrier differential chaos shift keying communication // IEEE Transactions on Vehicular Technology. 2021. Т. 70, № 12. С. 12675—12690.

37. Yao J. L. et al. Chaos-based wireless communication resisting multipath effects // Physical Review E. 2017. Т. 96, № 3. С. 032226.

38. Song D., Liu J., Wang F. Statistical analysis of chaotic stochastic properties based on the logistic map and Fibonacci sequence // Proceedings of 2013 2nd International Conference on Measurement, Information and Control. IEEE, 2013. Т. 1. С. 611—614.

39. Zhang J., Cheng J., Li G. Chaotic spread-spectrum sequences using chaotic quantization // 2007 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2007. С. 40—43.

40. Chengquan A., Tingxian Z. Design of chaotic spread-spectrum sequences with good correlation properties for DS/CDMA // 2003 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2003. Т. 3. С. III—III.

41. Velavan P., Santhi M. Design and FPGA realization of MC-CDMA system using pseudo chaotic sequence generator // 2014 International Conference on Communication and Signal Processing. IEEE, 2014. С. 498—502.

42. Xiao L., Xuan G., Wu Y. Research on an improved chaotic spread spectrum sequence // 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 2018. С. 420—423.

43. Rastogi U. et al. Optimal chaotic sequences for DS-CDMA using genetic algorithm // 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2017. С. 900—904.

44. Rui X. U. E., Xiong Y., Cheng Q. A novel ranging code based on improved logistic map chaotic sequences // 2019 21st International Conference on Advanced Communication Technology (ICACT). IEEE, 2019. С. 11—15.

45. Rao K. D., Raju B. Improved robust multiuser detection in non-Gaussian channels using a new M-estimator and spatiotemporal chaotic spreading sequences // APCCAS 2006-2006 IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 2006. С. 1729—1732.

46. Sedaghatnejad S., Farhang M. Detectability of chaotic direct-sequence spread-spectrum signals // IEEE Wireless Communications Letters. 2015. Т. 4, № 6. С. 589—592.

47. Xiao L., Xuan G., Wu Y. Blind estimation of chaotic spread spectrum sequences by neural network // 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2018. С. 1—9.

48. Hounkpevi F. O., Yaz E. E. Chaotic-Pulse-Position Modulation: A third party intrusion scheme using Kalman Filter // 2004 IEEE Electro/Information Technology Conference. IEEE, 2004. С. 20—25.

49. Dmitriev B. S. et al. Ultra wide band UHF chaotic impulse generator // IVESC 2012. IEEE, 2012. С. 91—92.

50. Fierro G. V., Flores-Verdad G. E. A CMOS low complexity gaussian pulse generator for ultra wideband communications // 2009 52nd IEEE International Midwest Symposium on Circuits and Systems. IEEE, 2009. С. 70—73.

51. Dmitriev B. S. et al. KLYSTRON-Generator of Chaotic Radioimpulses // 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources. IEEE, 2006. С. 105—106.

52. Wang Y. et al. Method of chaotic pulse sequence produced by continuous chaotic system // 2008 9th International Conference on Signal Processing. IEEE, 2008. С. 1892—1895.

53. Haimovich A. M., Blum R. S., Cimini L. J. MIMO Radar with Widely Separated Antennas // IEEE Signal Process Mag. 2008. Т. 25, № 1. С. 116—129.

54. Jemaa Z. B., Belghith S. Chaotic sequences with good correlation properties for MIMO Radar application // 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, 2016. С. 1—5.

55. Zeng G. et al. Design of a Chaotic Index Modulation Aided Frequency Diverse Array Scheme for Directional Modulation // IEEE Transactions on Vehicular Technology. – 2023. C. 1—6.

56. Dmitriev A. S., Efremova E. V., Kuz’min L. V. Chaotic pulse trains generated by a dynamical system driven by a periodic signal // Technical physics letters. 2005. Т. 31. С. 961—963.

57. Dmitriev, A. S., Efremova E. V., Kuz’min L. V., Atanov N. V. A train of chaotic pulses generated by a dynamic system driven by an external (periodic) force // J. Commun. Technol. Electron. 2006. Т. 51. С. 557—567.

58. Dmitriev A., Efremova E., Kuzmin L., Atanov N. Forming pulses in non-autonomous chaotic oscillator // Int. J. Bifurc. Chaos. 2007. Т. 17, № 10. С. 3443—3448.

59. Dmitriev A. S., Kyarginsky B. Y., Panas A. I., Starkov S. O. Experiments on ultra wideband direct chaotic information transmission in microwave band // Int. J. Bifurc. Chaos. 2003. Т. 6. С. 1495—1507.

60. Dmitriev A. S., Zakharchenko K. V., Puzikov D. Y. Introduction to the Theory of Direct Chaotic Data Transmission // Journal of communications technology & electronics. 2003. Т. 48, № 3. С. 293—302.

61. Andreyev Y. V. et al. Qualitative theory of dynamical systems, chaos and contemporary wire-less communications // International journal of bifurcation and chaos. 2005. Т. 15. №. 11. С. 3639—3651.

62. Dmitriev A. S. et al. Active wireless ultrawideband networks based on chaotic radio pulses // Journal of Communications Technology and Electronics. 2017. Т. 62, № 4. С. 380—388.

63. Dmitriev A. S. et al. Self-organizing ultrawideband wireless sensor network // 2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINK-HROINFO). IEEE, 2017. С. 1—6.

64. Kuzmin L. V., Grinevich A. V., Ushakov M. D. An experimental investigation of the multi-path propagation of chaotic radio pulses in a wireless channel // Technical Physics Letters. 2018. Т. 44. С. 726—729.

65. Kuz’min L. V., Grinevich A. V. Method of blind detection of ultrawideband chaotic radio pulses on the background of interpulse interference //Technical Physics Letters. 2019. Т. 45. С. 831—834.

66. Kennedy M. P. Chaos in the Colpitts oscillator // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1994. Т. 41, № 11. С. 771—774.

67. Dmitriev A. S. et al. Generator of microwave chaotic oscillations based on a self-oscillating system with 2.5 degrees of freedom // Journal of Communications Technology and Electronics. 2007. Т. 52. С. 1137—1145.

68. Dmitriev A. S., Efremova E. V., Rumyantsev N. V. A microwave chaos generator with a flat envelope of the power spectrum in the range of 3–8 GHz // Technical Physics Letters. 2014. Т. 40. С. 48—51.

69. Efremova E. V., Dmitriev A. S. Ultrawideband microwave 3–7 GHz chaotic oscillator implemented as SiGe integrated circuit // Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences : Proceedings of the XXIII International Conference on Non-linear Dynamics of Electronic Systems, Como, Italy, 7–11 September 2015. Cham : Springer International Publishing, 2017. С. 71—80.


Войти или Создать
* Забыли пароль?